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1. Introduction

Counting world sheet instantons (that is, holomorphic curves) on a Calabi-Yau threefold

has had a large number of applications in mathematics and physics, ever since it was

essentially solved by mirror symmetry several years ago [2]. The purpose of this paper is

to take into account an important subtlety that does not appear in very simple Calabi-Yau

manifolds like hypersurfaces in smooth toric varieties. This subtlety is the appearance of

torsion curve classes. That is, the homology1 group

H2

(
X, Z

)
= Z3 ⊕ Z3 ⊕ Z3 (1.1)

contains the torsion2 subgroup Z3 ⊕ Z3. Here, the manifold of interest X is a quotient of

one of Schoen’s Calabi-Yau manifolds [3, 4] by a freely acting symmetry group. There are

already a few known examples of such Calabi-Yau manifolds with torsion curves [5 – 9], but

the proper instanton counting has never been done before.

The prime motivation for studying these curves is that one would like to compute the

superpotential for the vector bundle moduli [10 – 16] in a heterotic MSSM [17 – 25]. Our

main result will be that there exist smooth rigid rational curves in X that are alone in

their homology class. This proves that, in general, no cancellation between contributions

to the superpotential W from instantons in the same homology class can occur.

Therefore we would like to count rational curves on X. In physical terms, we need to

find the instanton correction F
np
X,0 to the genus zero prepotential of the (A-model) topo-

logical string on X. This is usually written as a (convergent) power series in h11 variables

qa = e2πita . Each summand is the contribution of an instanton, and the (integer) coeffi-

cients are the multiplicities of instantons in each homology class. According to [26, 27, 1]

the novel feature of the 3-torsion curves on X is that for each 3-torsion generator we need

an additional variable bj such that b3
j = 1. The Fourier series of the prepotential on X

becomes

F
np
X,0(p, q, r, b1, b2) =

∑

n1,n2,n3∈Z

m1,m2∈Z3

n(n1,n2,n3,m1,m2) Li3
(
pn1qn2rn3bm1

1 bm2
2

)
, (1.2)

where n(n1,n2,n3,m1,m2) is the instanton number in the curve class (n1, n2, n3,m1,m2).

For the purpose of computing the prepotential, we can either use directly the A-model

or start with the B-model and apply mirror symmetry. The A-model calculation was carried

out in the companion paper [1], entitled Part A. The results were:

• A set of powerful techniques to compute the torsion subgroups in the integral ho-

mology and cohomology groups of X. They are spectral sequences starting with the

so-called group (co)homology of the group action on the universal cover X̃ .

1In the following, Z3
def= Z/3Z always denotes the integers mod 3. Similarly, we write (Z3)

n = ⊕nZ3 =

Z3 ⊕ · · · ⊕ Z3 for the Abelian group generated by n generators of order 3.
2Not to be confused with the torsion tensor of a connection.
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• A closed formula for the genus zero prepotential

F
np
X,0(p, q, r, b1, b2) =

( 2∑

i,j=0

pbi
1b

j
2

)
P (q)4P (r)4 + O(p2) =

2∑

i,j=0

Li3(pbi
1b

j
2) + · · · (1.3)

to linear order in p, extending the one computed in [28] for the universal cover X̃ .

Here, if p(k) is the number of partitions of k ∈ Z≥, then P (q) is the generating

function for partitions,

P (q) def=

∞∑

i=0

p(i)qi =
q

1
24

η( 1
2πi ln q)

. (1.4)

• Expanding eq. (1.3) as an instanton series we find that the number of rational curves

of degree (1, 0, 0,m1 ,m2) is:

n(1,0,0,m1,m2) = 1, ∀ m1,m2 ∈ Z3. (1.5)

Furthermore, these curves have normal bundle OP1(−1)⊕OP1(−1). Hence, there are

indeed 9 smooth rigid rational curves which are alone in their homology class.

Alternatively, one can start with the B-model topological string and apply mirror symme-

try, which is what we will do in this paper, entitled Part B. This will allow us to obtain the

higher order terms in p. The order in p up to which one wants to compute the instanton

numbers is only limited by computer power. We will again find a closed formula at every

order in p, however, this time by guessing it from the instanton calculation, and hence only

up to the order given by this limitation. The way to arrive at this result is as follows:

• The universal cover X̃ admits a simple realization as a complete intersection in a toric

variety. In this situation, mirror symmetry boils down to an algorithm to compute

instanton numbers. Unfortunately, there are many non-toric divisors which cannot

be treated this way. It turns out that, after descending to X, precisely the torsion

information is lost. In this approach one can only compute F
np
X,0(q1, q2, q3, 1, 1).

• As a pleasant surprise we find strong evidence that the manifold X is self-mirror.

In particular, we attempt to compute the instanton numbers on the mirror X∗ by

descending from the covering space X̃∗. The embedding of X̃∗ into a toric variety

is such that all 19 divisors are toric. In principle, this allows for a complete analysis

including the full Z3 ⊕ Z3 torsion information, but this is too demanding in view of

current computer power.

• Although the full quotient X = X̃/(Z3 × Z3) is not toric, it turns out that a certain

partial quotient X = X̃/Z3 can be realized as a complete intersection in a toric

variety. That way, one only has to deal with h11(X) = 7 parameters, which is

manageable on a desktop computer. Assuming the self-mirror property, we work

with the mirror X
∗
, for which again all divisors are toric, and we can compute the

expansion of F
np
X,0(p, q, r, 1, b2) to any desired degree. A symmetry argument then

allows one to recover the b1 dependence as well. Finally, we can extract the instanton

numbers n(n1,n2,n3,m1,m2) including the torsion information.

– 3 –
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• As can be seen from the A-model result eq. (1.3), we observe that the prepotential

F
np
X,0 at order p factors into

∑2
i,j=0 bi

1b
j
2 times a function of p, q, r only. This means

that the instanton number does not depend on the torsion part of its homology class.

We will explain the underlying reason for this factorization and show that it breaks

down at order p3. This fits nicely with the B-model computation at order p3, where

the instanton numbers do depend on the torsion part.

• Another consequence of the self-mirror property is that X is a non-toric example for

the conjecture of [6]. By this conjecture, certain torsion subgroups of the integral

homology groups are exchanged under mirror symmetry.

An easily readable overview and a discussion of the physical consequences of our findings

for superpotentials and moduli stabilization of heterotic models was presented in [27]. The

present Part B is self-contained and can be read independently of Part A [1]. All necessary

results from Part A are reproduced in this part.

As a guide through this paper, we start in section 2 with a brief overview of the

topology of the various spaces involved as determined in Part A [1]. This is followed by

a review of the Batyrev-Borisov construction of mirror pairs of complete intersections in

toric varieties in section 3. We illustrate this construction by means of the covering spaces

X̃ and X̃∗ of our example. The review includes the techniques to compute the B-model

prepotential and the mirror map. These are applied in section 4 to the partial quotients

X and X
∗

yielding the main results stated above. This assumes that X as well as X

are self-mirror, and evidence for this property is recapitulated in section 5. Moreover,

we show how the torsion subgroups are exchanged. Section 6 contains an explanation for

the breakdown of the factorization alluded to above. Putting all the information together

we try to guess a closed form for the prepotential in section 7. Finally, we present our

conclusions in section 8. In the course of this work we will notice that a certain flop of X

is very natural from the toric point of view, and we will present it in appendix B.

2. Calabi-Yau threefolds

2.1 The Calabi-Yau threefold X

The Calabi-Yau manifold X of interest is constructed as a free G def= Z3 × Z3 quotient of

its universal covering space X̃. The latter is one of Schoen’s Calabi-Yau threefolds [3].

It is simply connected and hence easier to study. Among its various descriptions are the

fiber product of two dP9 surfaces, a resolution of a certain T 6 orbifold [29], or a complete

intersection in a toric variety. In the present Part B, we will mostly use the latter viewpoint.

The simplest way is to introduce the toric ambient variety P2 ×P1 ×P2 with homogeneous

coordinates (
[x0 : x1 : x2], [t0 : t1], [y0 : y1 : y2]

)
∈ P2 ×P1 ×P2 . (2.1)

The embedded Calabi-Yau threefold X̃ is then obtained as the complete intersection of a

degree (0, 1, 3) and a degree (3, 1, 0) hypersurface in P2 ×P1 ×P2. We restrict the coeffi-

cients of their defining equations Fi = 0 to a particular set of three complex parameters
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λ1, λ2, λ3, such that the polynomials Fi read

t0

(
x3

0 + x3
1 + x3

2

)
+ t1

(
x0x1x2

)
def= F1 (2.2a)

(
λ1t0 + t1

)(
y3
0 + y3

1 + y3
2

)
+

(
λ2t0 + λ3t1

)(
y0y1y2

)
def= F2. (2.2b)

For the special complex structure parametrized by λ1, λ2, λ3 the complete intersection is

invariant under the G = Z3 × Z3 action generated by (ζ def= e
2πi
3 )

g1 :





[x0 : x1 : x2] 7→ [x0 : ζx1 : ζ2x2]

[t0 : t1] 7→ [t0 : t1] (no action)

[y0 : y1 : y2] 7→ [y0 : ζy1 : ζ2y2]

(2.3a)

and

g2 :





[x0 : x1 : x2] 7→ [x1 : x2 : x0]

[t0 : t1] 7→ [t0 : t1] (no action)

[y0 : y1 : y2] 7→ [y1 : y2 : y0]

(2.3b)

One can show that the fixed points of this group action in P2 ×P1 ×P2 do not satisfy

eqs. (2.2a) and (2.2b), hence the action on X̃ is free.

2.2 The intermediate quotient X

The partial quotient

X def= X̃
/
G1 (2.4)

will be of particular interest in this paper because this quotient is generated by phase

symmetries, see eq. (2.3a), and hence is toric. In particular, we will need a basis of Kähler

classes. As usual, we will not distinguish degree-2 cohomology and degree-4 homology

classes but identify them via Poincaré duality. Part A [1] subsection 5.3 shows that3

H2
(
X, Z

)
= H2(X̃, Z)G1 ⊕ Z3 = spanZ

{
φ, τ1, υ1, ψ1, τ2, υ2, ψ2

}
⊕ Z3. (2.5)

Hence, by abuse of notation, we can identify the free generators on X with the G1-invariant

generators on X̃, see Part A eq. (8.48), via the pull back by the quotient map. The triple

intersection numbers on X = X̃/Z3 are one-third of the corresponding intersection numbers

3The torsion in H2 are just the Wilson lines, that is, first Chern classes of flat line bundles. They will

play no role in the following. The torsion curves in H2, on the other hand, are the focus of this paper.

– 5 –



J
H
E
P
1
0
(
2
0
0
7
)
0
2
3

Calabi-Yau

threefold
H2

(
−, Z

) Free

generators

Torsion

generators

X̃ Z19
{
p0, q0, . . . , q8, r0, . . . , r8

}
∅

X = X̃/G1 Z7 ⊕ Z3

{
P,Q1, Q2, Q3, R1, R2, R3

} {
b1

}

X = X̃/G Z3 ⊕ Z3 ⊕ Z3

{
p, q, r

} {
b1, b2

}

Table 1: The different Calabi-Yau threefolds, curve classes, and variables used to expand the

prepotential.

on X̃ listed in Part A eq. (8.50). Hence, the intersection numbers on X are

φτ1τ2 = 3 φτ1υ2 = 3 φτ1ψ2 = 6 φυ1τ2 = 3 φυ1υ2 = 3

φυ1ψ2 = 6 φψ1τ2 = 6 φψ1υ2 = 6 φψ1ψ2 = 12 τ2
1 τ2 = 1

τ2
1 υ2 = 1 τ2

1 ψ2 = 2 τ1υ1τ2 = 3 τ1υ1υ2 = 3 τ1υ1ψ2 = 6

τ1ψ1τ2 = 3 τ1ψ1υ2 = 3 τ1ψ1ψ2 = 6 τ1τ
2
2 = 1 τ1τ2υ2 = 3

τ1τ2ψ2 = 3 τ1υ
2
2 = 3 τ1υ2ψ2 = 6 τ1ψ

2
2 = 6 υ2

1τ2 = 3

υ2
1υ2 = 3 υ2

1ψ2 = 6 υ1ψ1τ2 = 6 υ1ψ1υ2 = 6 υ1ψ1ψ2 = 12

υ1τ
2
2 = 1 υ1τ2υ2 = 3 υ1τ2ψ2 = 3 υ1υ

2
2 = 3 υ1υ2ψ2 = 6

υ1ψ
2
2 = 6 ψ2

1τ2 = 6 ψ2
1υ2 = 6 ψ2

1ψ2 = 12 ψ1τ
2
2 = 2

ψ1τ2υ2 = 6 ψ1τ2ψ2 = 6 ψ1υ
2
2 = 6 ψ1υ2ψ2 = 12 ψ1ψ

2
2 = 12.

(2.6)

Clearly, G2 acts on the partial quotient X . From Part A eq. (8.54) it follows that, of the

7 non-torsion divisors above, only 3 are G2-invariant. This invariant part is particularly

manageable and will be important in the following. We find

H2
(
X̃, Z

)G

free
= H2

(
X, Z

)G2

free
= spanZ

{
φ, τ1, τ2

}
(2.7)

with products 3τ2
i = τiφ. In particular, the triple intersection numbers on X are

τ2
1 τ2 = 1, τ1φτ2 = 3, τ1τ

2
2 = 1, (2.8)

and 0 otherwise. Finally, the second Chern class of X is c2(X) = 12(τ2
1 + τ2

2 ). Therefore,

c2

(
X

)
· τ1 = 12, c2

(
X

)
· φ = 0, c2

(
X

)
· τ2 = 12. (2.9)

2.3 Variables

As we discussed in Part A subsection 8.1, the instanton-generated superpotential should

be thought of as a series with one variable for each generator in H2.

In particular, we will be interested in the Calabi-Yau threefolds X̃ , X , and X. For

these, the degree-2 integral homology and the variables used (see Part A [1] for precise

definitions) are in summarized table 1. Pushing down the curves by the respective quotients

– 6 –
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lets us express the prepotential on the quotient in terms of the prepotential on the covering

space. We found in Part A that

F
np

X,0

(
P,Q1, Q2, Q3, R1, R2, R3, b1) =

1

|G1|
F

np
eX,0

(
PQ5

1Q
6
2R

5
1R

6
2,

Q5
1Q

6
2, Q−2

1 Q−2
2 Q−3

3 b1, Q−1
1 Q−1

2 , Q3
3, Q2

3b1, Q3, 1, b1, Q1Q
3
3,

R5
1R

6
2, R−2

1 R−2
2 R−3

3 b2
1, R−1

1 R−1
2 , R3

3, R2
3b

2
1, R3, 1, b2

1, R1R
3
3

)

(2.10)

and

F
np
X,0

(
p, q, r, b1, b2) =

1

|G2|
F

np

X,0

(
p, q, b2, b2, r, b2

2, b2
2, b1

)
. (2.11)

3. Toric geometry and mirror symmetry

In this section we review mirror symmetry and the construction of the B-model for the

mirror of the covering space X̃. Since X̃ is a complete intersection in a toric variety, we

can use the standard constructions. Because we expect the model to be self-mirror, we will

analyze the B-model for X̃ and its mirror X̃∗. The toric geometry for X̃ is much simpler4

than for X̃∗, but contains less information. In this section we will start with the simpler

model in order to review the Batyrev-Borisov construction for the mirror of a complete

intersection in a toric variety. Then we will apply this construction to the more complicated

model, now without going into too many details. We will see that, on the simpler side,

not all parameters are toric and no torsion is visible. However, on the more complicated

mirror side, all parameters are toric which will allow us, in principle, to perform the B-

model computation of the complete prepotential. As X̃ ∼= X̃∗ is expected to be self-mirror,

this determines the complete prepotential F
np
eX,0

= F
np
eX∗,0

as well. In practice, however, the

analysis is computationally too involved.

Fortunately, the space X = X̃/G1 and its mirror will turn out to be both tractable with

toric methods and sufficiently informative. This quotient will be the subject of section 4.

Finally, this is also the starting point for arguing in section 5 that the self-mirror property

persists at the level of instanton corrections.

Recall that, in subsection 2.1 we defined our Calabi-Yau manifold as the complete

intersection

X̃ def=
{

F1 = 0, F2 = 0
}

⊂ P2 ×P1 ×P2 (3.1)

with the two polynomials F1, F2 as in eqs. (2.2a) and (2.2b), respectively. In order to

construct the mirror manifold following Batyrev and Borisov, we need to reformulate this

definition in terms of toric geometry. We review here some essential ingredients of toric

geometry, for details we refer to [30, 31] and references therein. We will give the abstract

definitions and concepts step by step, and at each step illustrate them with the example

X̃ and its mirror manifold X̃∗.

4Meaning that eX is a complete intersection in the very simple toric variety P2 ×P1 ×P2, whereas eX∗ is

embedded in a complicated toric ambient variety.

– 7 –
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3.1 Toric varieties

Given a lattice N of dimension d, a toric variety VΣ is defined in terms of a fan Σ which

is a collection of rational polyhedral5 cones σ ⊂ N such that it contains all faces and

intersections of its elements. VΣ is compact if the support of Σ covers all of the real

extension NR of the lattice N . The resulting d-dimensional variety VΣ is smooth if all

cones are simplicial and if all maximal cones are generated by a lattice basis.

Let Σ(1) denote the set of one-dimensional cones (rays) with primitive generators ρi,

i = 1, . . . , n. The simplest description of VΣ introduces n homogeneous coordinates zi

corresponding to the generators ρi of the rays in Σ(1). These homogeneous coordinates are

then subjected to weighted projective identifications

[
z1 : · · · : zn

]
=

[
λq

(a)
1 z1 : · · · : λq

(a)
n zn

]
a = 1, . . . , h (3.2)

for any nonzero complex number λ ∈ C×, where the integer n-vectors q
(a)
i are generators of

the linear relations
∑

q
(a)
i ρi = 0 among the primitive lattice vectors6 ρi. In order to obtain

a well-behaved quotient, we must exclude an exceptional set Z(Σ) ⊂ Cn that is defined in

terms of the fan, as will be explained below. Hence, the quotient is

VΣ =
(
Cn − Z(Σ)

)/((
C×

)h
× Γ

)
, (3.3)

where Γ ≃ N/ span{ρi} is a finite abelian group. There are h = n − d independent C×

identifications, therefore the complex dimension of VΣ equals the rank d of the lattice N .

The identifications by Γ are only non-trivial if the ρi do not span the lattice N . Refinements

of the lattice N with fixed ρi can hence be used to construct quotients of toric varieties

VΣ by discrete phase symmetries such as Z3. Such quotients will be discussed in section 4.

Note that the rays ρi are in 1-to-1 correspondence with the (C×)-invariant divisors Di on

VΣ, which are defined as

Di =
{
zi = 0

}
⊂ VΣ. (3.4)

Conversely, the homogeneous coordinate zi is a section of the line bundle O(Di).

For example, consider the simplest compact toric variety, the projective space Pd. Its

fan Σ = Σ(∆) is generated by the n = d + 1 vectors

ρ1 = e1, ρ2 = e2, . . . , ρn−1 = ed, ρn = −
d∑

i=1

ei (3.5)

of a d-dimensional simplex ∆. They satisfy a single linear relation,
∑n

i=1 ρi = 0. Therefore

qi = 1 for all i, and the homogeneous coordinates in eq. (3.2) are the usual homogeneous

coordinates on Pd.

5Here, the tip of the cone is always the origin of N . A cone is rational if it is spanned by rays which

pass through lattice points (other than the origin), that is, have rational slopes. A cone is polyhedral if it

is the cone over an (d − 1)-dimensional polytope. In other words, curved faces are not allowed.
6We will use the same symbol ρ∗ to denote the generators in Σ(1) and the corresponding primitive lattice

vectors in N .
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For products of toric varieties we simply extend the relations for any single factor by

zeros and take the union of them. Hence, the fan of the polyhedron ∆∗ describing the

5-dimensional toric variety P2 × P1 × P2 in eq. (3.1) is generated by the n = 5 + 3 = 8

vectors
ρ1 = e1, ρ2 = e2, ρ3 = −e1 − e2, ρ4 = e3,

ρ5 = −e3, ρ6 = e4, ρ7 = e5, ρ8 = −e4 − e5

(3.6)

satisfying the linear relations

3∑

i=1

ρi =
5∑

i=4

ρi =
8∑

i=6

ρi = 0. (3.7)

Except for the origin, there are no other lattice points in the interior of ∆∗. The corre-

sponding homogeneous coordinates will be denoted by

z1 = x0, z2 = x1, z3 = x2,

z4 = t0, z5 = t1, (3.8)

z6 = y0, z7 = y1, z8 = y2.

In more general situations, given a polytope ∆∗ ⊂ N we will denote the resulting toric

variety by P∆∗ = VΣ(∆∗).

3.2 The Batyrev-Borisov construction

Batyrev showed that a generic section of K−1
P∆∗

, the anticanonical bundle of P∆∗, defines

a Calabi-Yau hypersurface if ∆∗ is reflexive, which means, by definition, that ∆∗ and its

dual

∆ =
{
x ∈ MR

∣∣∣ (x, y) ≥ −1 ∀y ∈ ∆∗
}

(3.9)

are both lattice polytopes. Here, M = Hom(N, Z) is the lattice dual to N and MR is

its real extension. Mirror symmetry corresponds to the exchange of ∆ and ∆∗ [32]. The

generalization of this construction to complete intersections of codimension r > 1 is due

to Batyrev and Borisov [33, 34]. For that purpose, they introduced the notion of a nef

partition. Consider a dual pair of d-dimensional reflexive polytopes ∆ ⊂ MR,∆∗ ⊂ NR. In

that context, a partition E = E1 ∪ · · · ∪Er of the set of vertices of ∆∗ into disjoint subsets

E1, . . . , Er is called a nef-partition if there exist r integral upper convex Σ(∆∗)-piecewise

linear support functions φl : NR → R, l = 1, . . . , r such that

φl(ρ) =

{
1 if ρ ∈ El,

0 otherwise.
(3.10)

Each φl corresponds to a divisor

D0,l =
∑

ρ∈El

Dρ (3.11)

on P∆∗, and their intersection

Y = D0,1 ∩ · · · ∩ D0,r (3.12)
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defines a family Y of Calabi-Yau complete intersections of codimension r. Moreover, each

φl corresponds to a lattice polyhedron ∆l defined as

∆l =
{

x ∈ MR

∣∣∣ (x, y) ≥ −φl(y) ∀y ∈ NR

}
. (3.13)

The lattice points m ∈ ∆l correspond to monomials

zm =

n∏

i=1

z
〈m,ρi〉
i ∈ Γ (P∆∗ ,O(D0,l)) . (3.14)

One can show that the sum of the functions φl is equal to the support function of K−1
P∆∗

and, therefore, the corresponding Minkowski sum is ∆1 + · · · + ∆r = ∆. Moreover, the

knowledge of the decomposition E = E1 ∪ · · · ∪ Er is equivalent to that of the set of

supporting polyhedra Π(∆) = {∆1, . . . ,∆r}, and therefore this data is often also called a

nef partition.

It can be shown that given a nef partition Π(∆) the polytopes7

∇l =
〈
{0} ∪ El

〉
⊂ NR (3.15)

define again a nef partition Π∗(∇) = {∇1, . . . ,∇r} such that the Minkowski sum ∇ =

∇1 + · · · + ∇r is a reflexive polytope. This is the combinatorial manifestation of mirror

symmetry in terms of dual pairs of nef partitions of ∆∗ and ∇∗, which we summarize in

the diagram

∆ = ∆1 + . . . + ∆r ∆∗ =
〈
∇1, . . . ,∇r

〉
55

Mirror

Symmetry

kkkkkkkkkkkkk

uukkkkkkkkkkkkk
MR NR

∇∗ =
〈
∆1, . . . ,∆r

〉
(∆l,∇l′) ≥ −δl l′ ∇ = ∇1 + . . . + ∇r

. (3.16)

In the horizontal direction, we have the duality between the lattices M and N and mirror

symmetry goes from the upper right to the lower left. The other diagonal has also a

meaning in terms of mirror symmetry as we will explain below. The complete intersections

Y ⊂ P∆∗ and Y ∗ ⊂ P∇∗ associated to the dual nef partitions are then mirror Calabi-Yau

varieties.

Let us now apply the Batyrev-Borisov construction to the complete intersection

eq. (3.1), hence r = 2. There exist several nef-partitions of ∆∗. The one which has the cor-

rect degrees (3, 1, 0) and (0, 1, 3) is, up to exchange of t0 and t1, E1 = {ρi |i = 1, . . . , 4} and

E2 = {ρi |i = 5, . . . , 8}. Adding the origin and taking the convex hull yields the polytopes

∇1 =
〈
ρ1, . . . , ρ4, 0

〉
, ∇2 =

〈
ρ5, . . . , ρ8, 0

〉
, (3.17)

7The brackets
˙
· · ·

¸
denote the convex hull.
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where the ρi are defined in eq. (3.6). The two divisors cutting out the Calabi-Yau threefold

are, according to eq. (3.11),

D0,1 =

4∑

i=1

Di, D0,2 =

8∑

i=5

Di ⇒ X̃ = D0,1 ∩ D0,2 ⊂ P∆∗ (3.18)

Note that, while ∆∗ has no further lattice points, its dual ∆ has 18 vertices and 300 lattice

points. Using the computer package PALP [35], we determine the associated polytopes

∆1 and ∆2 of the global sections of O(D0,1) and O(D0,2), respectively. In an appropriate

lattice basis there is, up to symmetry, a unique nef partition consisting of

∆1 =
〈
ν1, . . . , ν6, 0

〉
, ∆2 =

〈
ν7, . . . , ν12, 0

〉
, (3.19)

where
ν1 = 2e1 − e2, ν2 = −e1 + 2e2, ν3 = −e1 − e2,

ν4 = 2e1 − e2 − e3, ν5 = −e1 + 2e2 − e3, ν6 = −e1 − e2 − e3,

ν7 = 2e4 − e5, ν8 = −e4 + 2e5, ν9 = −e4 − e5,

ν10 = e3 + 2e4 − e5, ν11 = e3 − e4 + 2e5, ν12 = e3 − e4 − e5.

(3.20)

Among these 12 vectors there are the 7 independent linear relations

3ν3 + ν4 + ν5 − 2ν6 = 0, 3ν9 + ν10 + ν11 − 2ν12 = 0,

ν1 − ν3 − ν4 + ν6 = 0, −ν1 + ν2 + ν4 − ν5 = 0,

ν7 − ν9 − ν10 + ν12 = 0, −ν7 + ν8 + ν10 − ν11 = 0,

−ν2 + ν5 − ν8 + ν11 = 0.

(3.21)

The convex hull ∇∗ = 〈∆1,∆2〉 yields the fan Σ(∇∗) and, consequently, the toric variety

P∇∗ . Let D∗
i , i = 1, . . . , 12 be the divisors associated to the vertices νi. Then, by eq. (3.11),

the nef partition eq. (3.19) defines the divisors

D∗
0,1 =

6∑

i=1

D∗
i , D∗

0,2 =

12∑

i=7

D∗
i , ⇒ X̃∗ = D∗

0,1 ∩ D∗
0,2 ⊂ P∇∗ (3.22)

cutting out the mirror complete intersection X̃∗. In contrast to ∆∗, the polytope ∇∗

contains extra integral points. We find that it contains, in addition to the origin and the

vertices in eq. (3.20), the 26 points

ν13 =
1

3
(ν4 + ν5 + ν6) = −e3, ν12+6k+i+j =

1

3
(ν3k+i + 2ν3k+j),

ν14 =
1

3
(ν10 + ν11 + ν12) = e3, ν15+6k+i+j =

1

3
(ν3k+j + 2ν3k+i)

∀ k ∈ {0, . . . , 3}, (i, j) ∈
{
(1, 2), (1, 3), (2, 3)

}
.

(3.23)

For completeness, note that the dual polytope ∇ has 15 vertices and 24 lattice points.

Running PALP to compute the Hodge numbers using the formula of [36], we obtain

h1,1
(
X̃

)
= h1,2

(
X̃

)
= h1,1

(
X̃∗

)
= h1,2

(
X̃∗

)
= 19, (3.24)
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in agreement with Part A [1], eq. (2.5).

So far, we have mainly focused on the information contained in the reflexive polytopes

∆∗ and ∇∗ and ignored their duals. We have already mentioned that in the reflexive case a

generic section of K−1
P∆∗

defines a Calabi-Yau manifold, and that such sections are provided

by the lattice points of ∆. In other words, ∆ and ∇ are the Newton polytopes of Y and

Y ∗, respectively. That is, the complete intersection Y (Y ∗) is defined by r polynomial

equations, and the exponents of the monomials in each equation are the lattice points in ∆

(∇). More precisely, the Minkowski sum for, say, ∆ = ∆1 + · · ·+∆r defines r homogeneous

polynomials

Fl(z) =
∑

m∈
∆l∩M

al,m

r∏

l′=1

∏

ρi∈
∇l′∩N

z
〈m,ρi〉+δl l′

i , l = 1, . . . , r (3.25)

with coefficients al,m ∈ C. The simultaneous vanishing of F1, . . . , Fr then defines the

complete intersection Calabi-Yau manifold Y ⊂ P∆∗. Exchanging ∆l and ∇l′ in eq. (3.25)

yields the equations F ∗
l defining the mirror manifold Y ∗. It is in this sense that the

map from the upper left to the lower right in eq. (3.16) is also a manifestation of mirror

symmetry. Since we will not need the actual polynomials for X̃ and X̃∗, we refrain from

writing them explicitly. Instead, we refer the reader to section 4, where we determine the

equations in a simpler situation.

3.3 Toric intersection ring

Up to now we have only considered one of the ingredients in the fan Σ, namely, the

generators ρ ∈ Σ(1) which defined the C× action in eq. (3.3). The second ingredient

is the exceptional set Z(Σ). It corresponds to fixed loci of a continuous subgroup of

(C×)
h

for which the quotient eq. (3.3) is not well defined. Therefore, these loci have to

be removed. In terms of the homogeneous coordinates zi, this happens precisely when a

subset {zi |i ∈ I}, I ⊆ {1, . . . , n}, of the coordinates vanishes simultaneously such that

there is no cone σ ∈ Σ containing all of the ρi ⊆ σ, i ∈ I. Hence, the set Z(Σ) is

the union of the sets ZI = {[z1 : · · · : zn] |zi = 0∀i ∈ I}. Minimal index sets I with this

property are called primitive collections [37]. In order to determine the index sets I we need

a coherent8 triangulation T = T (∆∗) of the polytope ∆∗ for which all simplices contain

the origin. Different triangulations will yield different exceptional sets and, hence, different

toric varieties. However, for simplicity, we will mostly suppress the choice of a triangulation

in the notation. In the case of complete intersections, only those triangulations of ∆∗

are compatible with a given nef partition that can be lifted to a triangulation of the

corresponding Gorenstein cone, see [38].

The polytope defining projective space Pd admits a unique triangulation with the

required properties, and this triangulation consists of n = d + 1 simplices. The only

primitive collection is I = {1, . . . , n}. This is well-known from the definition of projective

space, where we have to remove the origin z1 = · · · = zd+1 = 0 from Cd+1. Similarly, the

8Coherent triangulations, sometimes also called regular triangulations, satisfy some technical property

that is equivalent to the associated toric quotient being Kähler.
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polyhedron ∆∗ for the ambient space P∆∗ of X̃ admits a unique triangulation, and the

primitive collections are those of its factors, that is,

I1 = {1, 2, 3}, I2 = {4, 5}, I3 = {6, 7, 8}. (3.26)

The mirror polyhedron ∇∗, on the other hand, admits a huge number of triangulations.

We will discuss particularly interesting triangulations of the mirror polyhedron at the end

of appendix A.

The primitive collections determine the cohomology ring of toric varieties and, together

with the nef partition, complete intersections. Recall that if the collection ρi1 , . . . , ρik of

rays is not contained in at least one cone, then the corresponding homogeneous coordinates

zil are not allowed to vanish simultaneously. Therefore, the corresponding divisors Dil have

no common intersection. Hence, we obtain non-linear relations RI = Di1 · . . . · Dik = 0

in the intersection ring. It can be shown that all such relations are generated by the

primitive collections I = {i1, . . . , ik} defined above. The ideal generated by these RI is

called Stanley-Reisner ideal

ISR =
〈
RI , I primitive collection

〉
⊂ Z[D1, . . . ,Dn], (3.27)

and Z[D1, . . . ,Dn]/ISR is the Stanley-Reisner ring. The intersection ring of a non-singular

compact toric variety PΣ is [39]

H∗
(
PΣ, Z

)
= Z [D1, . . . ,Dn]

/〈
ISR,

∑

i

(m,ρi)Di

〉
. (3.28)

In other words, the intersection ring can be obtained from the Stanley-Reisner ring by

adding the linear relations
∑

i(m,ρi)Di = 0, where it is sufficient to take a set of basis

vectors for m ∈ M . In particular, the intersection number of the divisors spanning a

maximal-dimensional simplicial cone σ = spanR≥{ρi1 , . . . , ρid} is

Di1 · . . . · Did =
1

Vol(σ)
, (3.29)

where Vol(σ) is the lattice-volume, that is, the geometric volume divided by the volume 1
d!

of a basic simplex. For practical purposes it is sufficient to compute one of these volumes,

the remaining intersections can be obtained using the linear and non-linear relations.

Having found the intersection ring of the ambient toric variety, we now turn to the

complete intersection Y ⊂ P∆∗. The toric part of its even-degree intersection ring is [40]

Hev
toric

(
Y, Q

)
= Q [D1, . . . ,Dn]

/
IY , (3.30)

where IY is the ideal quotient

IY =
〈
ISR,

∑

i

(m,ρi)Di

〉
:

r∏

l=1

D0,l. (3.31)

Note that it can happen that some of the Di appear as generators of IY . This means that

they can be set to zero in the intersection ring. Geometrically, this means that these divisors
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do not intersect a generic complete intersection Y . While the intersection ring depends

on the triangulation T (∆∗) through the primitive collections defining the Stanley-Reisner

ideal, we conjecture that the divisors Di not intersecting Y are independent of the choice

of triangulation. This conjecture is proven for r = 1 and supported by a large amount of

empirical evidence for r > 1. We conclude that the dimension dimH2
toric(Y ) is in general

smaller than h1,1(Y ) for the following two reasons: Only h = n − d = dim H2(P∆∗ , Z)

divisors are realized in the ambient toric variety P∆∗, and some of them may not descend

to the complete intersection Y . Using the adjunction formula we can compute the the

Chern classes of Y by expanding

c(Y ) =

n∏
i=1

(1 + Di)

r∏
l=1

(1 + D0,l)

. (3.32)

The intersection ring together with the second Chern class determine the diffeomorphism

type of a simply-connected Calabi-Yau manifold [41]. If we consider the cohomology with

integral coefficients there can be torsion and, in fact, this is what this paper is all about.

Unfortunately, a combinatorial formula in terms of the fan Σ(∆) for the torsion in the

integral cohomology of a toric Calabi-Yau manifold is only known in the hypersurface

case [6].

We now illustrate these concepts in the example of the complete intersection X̃ ⊂

P∆∗ = P2 × P1 × P2 and its mirror manifold X̃∗. In eq. (3.26) we already determined the

primitive collections, hence the corresponding Stanley-Reisner ideal is

ISR =
〈
D1D2D3,D4D5,D6D7D8

〉
. (3.33)

The linear equivalences are D1 = D2, D1 = D3, D4 = D5, D6 = D7, D6 = D8 and, hence,

we can choose K1 = D4, K2 = D1, K3 = D6 as a basis for H2(P∆∗). In terms of this basis,

we obtain D0,1 = K1 + 3K2 and D0,2 = K1 + 3K3, see eq. (3.11). Therefore, the ideal I eX
in eq. (3.18) is

I eX =
〈
K3

2K2 − K2
2K3, K1K2 − 3K2

2, K1K3 − 3K3
2, K1

2, K2
3, K3

3
〉
. (3.34)

Next, we define the restriction of the Ki to X̃ to be the divisors

J̃i = Ki · X̃ = Ki(K1 + 3K2)(K1 + 3K3). (3.35)

We need to compute one of the intersection numbers directly from the volume of a cone,

say, J̃1J̃2J̃3 = K1K2K3(K1 + 3K2)(K1 + 3K3) = 9K1K
2
2K2

3 , where we made use of the

relations in I eX . Using eq. (3.29), this intersection can be evaluated to be

9K1K
2
2K2

3 = 9D1D2D4D6D7 = 9/Vol
(
〈ρ1, ρ2, ρ4, ρ6, ρ7〉

)

= 9/Vol
(
〈e1, e2, e3, e4, e5〉

)
= 9.

(3.36)

Then, again using eq. (3.34), we see that the only non-vanishing intersection numbers and

the second Chern class are

J̃2
2 J̃3 = 3, J̃1J̃2J̃3 = 9, J̃2J̃

2
3 = 3,

c2

(
X̃

)
· J̃1 = 0, c2

(
X̃

)
· J̃2 = 36, c2

(
X̃

)
· J̃3 = 36.

(3.37)
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Note that only h1,1
toric(X̃) = 3 of the h1,1(X̃) = 19 parameters are realized torically. Com-

paring the triple intersection numbers with eq. (2.8), it is clear that these 3 toric divisors

are precisely the G-invariant divisors on X̃ .

A similar, though much more complicated, calculation can be done for X̃∗ ⊂ P∇∗ .

Using the results of appendix A one can show that, among the points in eq. (3.23), the 14

divisors D∗
13,D

∗
14,D

∗
12+6k+i+j ,D

∗
15+6k+i+j , k = 0, 2 appear as generators of eq. (3.31) and,

therefore, do not intersect X̃∗. Subtracting from the remaining 24 divisors in eqs. (3.20)

and (3.23) the remaining 5 linear relations in eq. (3.21), we find that all h1,1
toric(X̃

∗) =

h1,1(X̃∗) = 19 moduli are realized torically.

3.4 Mori cone

As we have just seen, the cohomology classes Di span H2(PΣ, R) = H1,1(PΣ). The Kähler

classes of a smooth projective toric variety PΣ form an open cone in H1,1(PΣ) called the

Kähler cone K(PΣ). This cone has a combinatorial description in terms of the fan Σ, which

we now review.

First, define a support function to be a continuous function ψ : NR → R given on each

cone σ ∈ Σ by an mσ ∈ MR via

ψ(ρ) = (mσ, ρ) ∀ρ ∈ σ ⊂ NR. (3.38)

A support function determines a divisor D =
∑

i ψ(ρi)Di. We say that D is convex if ψ is a

convex function on NR. The convex classes form a non-empty strongly convex polyhedral

cone in H1,1(PΣ) whose interior is the Kähler cone K(PΣ). Such a support function is

strictly convex if and only if

ψ(ρi1 + · · · + ρik) > ψ(ρi1) + · · · + ψ(ρik) (3.39)

for every primitive collection I = {i1, . . . , ik} [40]. The dual of the Kähler cone K(PΣ) is

called the Mori cone or the cone of numerically effective curves NE(PΣ). Its generators

can be described by vectors l(a) of the corresponding linear relations
∑

i l
(a)
i ρi = 0. Each

face of the Kähler cone K(PΣ) is dual to an edge of NE(PΣ). These edges are generated by

curves c(a), and the entries of the vector l(a) are

(
l(a)

)
i
= c(a) · Di. (3.40)

A practical algorithm to find the generators for l(a) in terms of the triangulation T (∆∗) is

described in [42]. Of course, we are not interested in the ambient space but in a complete

intersection Y ⊂ P∆∗. The restriction of a Kähler class on the ambient space yields a

Kähler class on Y , but not every Kähler class on Y arises that way. We define the toric

part of the Kähler cone on Y as the restriction [43]

K(Y )toric = K(PΣ)
∣∣
Y

⊂ K(Y ). (3.41)

In the simplicial case, we can always take the basis Ji of H2
toric(Y, Q) to be edges of the

Kähler cone. The dual of the toric Kähler cone of Y is the (toric) Mori cone NE(Y )toric.
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This is sufficient for mirror symmetry purposes, however, it can be larger than the actual

cone of effective curves. Once the generators l(a) of NE(P∆∗) are determined, we need to

add the information about the nef partition. For this purpose, we define

l
(a)
0,m

def= −D0,m · c(a) m = 1, . . . , r. (3.42)

Finally, it is customary to write the generators of the Mori cone NE(Y )toric as

l(a) =
(
l
(a)
0,1 , . . . , l

(a)
0,r ; l

(a)
1 , . . . , l(a)

n

)
, (3.43)

which are, by abuse of notation, again denoted by l(a). The knowledge of the (toric) Mori

cone is important for several reasons. It defines the local coordinates on the complex

structure moduli space of the mirror Y ∗ near the point of maximal unipotent monodromy.

Moreover, the generators enter the coefficients of the fundamental period which is a solution

of the Picard-Fuchs equations as we will review in subsection 3.5.

For example, using the unique primitive collections in eq. (3.26), the Mori cone for

P∆∗ is generated9 by

l(1) =(0, 0, 0, 1, 1, 0, 0, 0)

l(2) =(1, 1, 1, 0, 0, 0, 0, 0)

l(3) =(0, 0, 0, 0, 0, 1, 1, 1).

(3.44)

Recalling the nef partition D0,1 = D1 + · · · + D4, D0,2 = D5 + · · · + D8, we prepend

(−D0,1 · c
(a),−D0,2 · c

(a)) = (−3, 0), (−1,−1), (0,−3), a = 1, 2, 3, to obtain the generators

l(1) =(−1,−1; 0, 0, 0, 1, 1, 0, 0, 0)

l(2) =(−3, 0; 1, 1, 1, 0, 0, 0, 0, 0)

l(3) =( 0,−3; 0, 0, 0, 0, 0, 1, 1, 1)

(3.45)

of the Mori cone NE(X̃)toric. Due to the large number of toric moduli, the calculation

for the Mori cone NE(P∇∗) of the ambient toric variety of the mirror X̃∗ is much more

complex.

3.5 B-model prepotential

Mirror symmetry identifies the quantum corrected Kähler moduli space of Y with the

classical complex structure moduli space of Y ∗, see the excellent treatise in [43] for details.

The deformations of the complex structure of Y ∗ are encoded in the periods ̟ =
∫
γ
Ω and

the latter can be computed from the equations F ∗
l that cut out Y ∗ ⊂ P∇∗ . Given the Mori

cone eq. (3.43) and the classical intersections numbers κabc = Ja ·Jb ·Jc we follow [43 – 45, 38]

to write down a local expansion of the periods, convergent near the large complex structure

point, which is characterized by its maximal unipotent monodromy. In the following, we

will review just the bare essentials.

9We sort the Mori cone generators such that the first one corresponds to the P1 of the ambient space,

and the second and third generator are the hyperplane sections of the two P2. In other words, we have

J̃a · c(b) = δb
a. This is the basis of curves that we used for the A-model computation.
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The coefficients ai in the polynomial constraints F ∗
l of the complete intersection Y ∗,

see eq. (3.25), define the complex structure of Y ∗. A particular set of local coordinates ua

on the complex structure moduli space on Y ∗ is defined by

ub =

r∏

m=1

a
l
(b)
0,m

m,0

n∏

i=1

a
l
(b)
i

i b = 1, . . . , h (3.46)

where h def= h1,1
toric(Y ) and am,0 is the coefficient in (3.25) corresponding to the origin in ∇l.

In these coordinates, the point of maximal unipotent monodromy is at ub = 0. We define

the cohomology-valued period

̟(u, J) =
∑

{na≥=0}

r∏
m=1

(
1 −

h∑
a=1

l
(a)
0,mJa

)
−

Ph
a=1 l

(a)
0,mna

n∏
i=1

(
1 +

h∑
a=1

l
(a)
i Ja

)
Ph

a=1 l
(a)
i na

h∏

a=1

una+Ja
a . (3.47)

where (x)n = Γ(x+n)/Γ(x) is the Pochhammer symbol. Note that the choice of triangula-

tion is implicit in the generators l(a) of the Mori cone. Expanding ̟(u, J) by cohomology

degree yields

̟(u, J) = ̟(0)(u) +

h∑

a=1

̟(1)
a (u)Ja +

h∑

a=1

̟(2)
a (u)κabcJbJc − ̟(3)(u) dVol, (3.48)

where dVol is the volume form. The coefficients in eq. (3.48) are the fundamental period

̟(0)(u), that is, the unique solution to the Picard-Fuchs equations holomorphic at ua = 0,

and

̟(1)
a (u) = ∂Ja̟(u, J)|J=0, ̟(2)

a (u) =
1

2
κabc∂Jb

∂Jc̟(u, J)|J=0,

̟(3)(u) = −
1

6
κabc∂Ja∂Jb

∂Jc̟(u, J)|J=0. (3.49)

These coefficients coincide with the basis of solutions of the Picard- Fuchs equations ob-

tained from the Frobenius method in [46, 31]. The B-model prepotential F
B
Y ∗,0 is

F
B
Y ∗,0(u) =

1

2̟(0)(u)2

(
̟(0)(u)̟(3)(u) +

h∑

a=1

̟(1)
a (u)̟(2)

a (u)

)
. (3.50)

At the large complex structure point the mirror map defines natural flat coordinates on

the Kähler moduli space of the original manifold Y , which are

ti =
̟

(1)
i (u)

̟0(u)
, i = 1, . . . , h. (3.51)

We also define qj = e2πitj = uj + O(u2). One way to obtain the prepotential is to compute

its third derivatives

C∗
abc = DaDbDcF

B
Y ∗,0 =

∫

Y ∗

Ω ∧ ∂a∂b∂cΩ, (3.52)
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and apply the Picard-Fuchs operators. This leads to linear differential equations, which

determine C∗
abc up to a common constant, see again [46, 43] for details. The quantum

corrected three point function Cijk(q) on Y follows from C∗
abc(u) using the inverse mirror

map eq. (3.51) u = u(t), and one obtains

Cijk(q) =
1

̟(0)(u(q))2
∂ua

∂ti

∂ub

∂tj

∂uc

∂tk
C∗

abc(u(q)). (3.53)

In practice, we use the formula

Cijk(q) = ∂ti∂tj

̟
(2)
k (u(q))

̟(0)(u(q))
. (3.54)

Integrating three times with respect to ti yields the prepotential F
B
Y ∗,0(t) up to a polynomial

of degree three in ti which can be determined partially by the topological data of Y .

Mirror symmetry then ensures that the B-model prepotential, eq. (3.50), is equal to

the A-model prepotential. That is,

FY,0(q) = F
B
Y ∗,0(u(q)). (3.55)

This allows us to compute the instanton numbers nd. For the case of interest,

X̃ ∈ P∆∗ = P2 × P1 × P2, (3.56)

we refer to [28] where this program been carried out in detail. The same calculation can

in principle be done on the mirror X∗, but the large number of toric moduli again makes

it highly extensive. Instead, we refer to the next section where a suitable quotient of X̃∗

will be treated in detail for which the computations are reasonably simple.

4. Quotienting the B-Model

In this section we consider the quotient X = X̃/G in terms of toric geometry and study the

mirror of X in this context. In order to achieve this, we first analyze the partial quotient

X = X̃/G1. Using the techniques introduced in section 3, we construct the mirror X
∗
.

Using their toric realization, we perform the B-model computation for the non-perturbative

prepotentials F
np

X,0
and F

np

X
∗

,0
, respectively. Finally, we explain how one can implement the

quotient by G2 on both sides in order to obtain X and X∗.

4.1 The quotient by G1

We start with a review of the general discussion of free quotients of complete intersections

in toric geometry in [31]. Consider a fan Σ ⊂ NR and pick a lattice refinement N̄ such

that Γ = N̄/N is a finite abelian group. Such a lattice refinement consists of a finite

sequence of lattice refinements of the form N → N + wpZ which are described by a vector

wp = 1
kp

∑
αpiρi with αpi ∈ Z. The group Γ is then isomorphic to

∏
p Zkp

. Let Σ̄ be the

fan obtained from Σ by relating everything to the lattice N̄ . In this context, we make some

additional identifications in the toric quotient eq. (3.3) [47]. One finds that VΣ̄ = VΣ/Γ is
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the quotient of VΣ by the finite abelian group Γ. Its action on the homogeneous coordinates

is by multiplication by phases

[
z1 : · · · : zn

]
7→

[
ξα1z1 : · · · : ξαnzn

]
, ξ = e

2πi
k , (4.1)

for every cyclic subgroup of order k. We will denote such group actions by Zk : (α1, . . . , αn).

If VΣ is a compact toric variety, then the quotient VΣ̄ is never free [39]. However, a

hypersurface or complete intersection in VΣ need not intersect the set of fixed points, and

in that case we get a smooth quotient manifold with nontrivial fundamental group.

We now apply this to P∆∗ = P2 × P1 × P2 defined in eq. (3.6). The first step in

performing the quotient of P∆∗ by G1 thus amounts to a refinement N̄ = w Z + N of the

lattice N with index |G1| = 3. From the definition eq. (2.3a) of the action of G1 on P∆∗

and eq. (3.8) we read off that the refinement is by a vector

w ∈
1

3

(
ρ2 + 2ρ3 + ρ7 + 2ρ8

)
+ Z5. (4.2)

The resulting polytope ∆̄∗ admits the same nef partition as ∆∗ in eq. (3.17),

∇̄1 = 〈ρ̄1, . . . , ρ̄4, 0〉, ∇̄2 = 〈ρ̄5, . . . , ρ̄8, 0〉. (4.3)

where we express the generators ρ̄ in terms of ρ as

ρ̄i = ρi, i = 1, . . . , 6 ,

ρ̄7 = ρ7 + e1 + 2e2 + e4 + 2e5, ρ̄8 = ρ8 − e1 − 2e2 − e4 − 2e5. (4.4)

It is easy to check that the ρ̄i satisfy the same linear relations eq. (3.7) as the ρi, and that

w = 1
3 (ρ̄1 − ρ̄2 + ρ̄6 − ρ̄7) = −e2 − e5. The ρ̄i together with w therefore indeed generate

the lattice N̄ . Note that, while all 8 non-zero lattice points of ∆̄∗ are vertices, the dual

polytope ∆̄ has 18 vertices and 102 points. Using PALP [35] again, we compute the lattice

points of the polytope ∇̄∗ = 〈∆̄1, ∆̄2〉 ⊂ MR, which will describe the ambient space of the

mirror X
∗

of X. We find

∆̄1 = 〈ν̄1, . . . , ν̄6, 0〉, ∆̄2 = 〈ν̄7, . . . , ν̄12, 0〉, (4.5)

where we express the vertices ν̄i in terms of the vertices νi of ∇∗ as

ν̄3k+1 = ν3k+1, ν̄3k+2 = ν3k+2 − e5, ν̄3k+3 = ν3k+3 + e5, k = 0, . . . , 3. (4.6)

Again, it is easy to check that the ν̄i satisfy the same linear relations eq. (3.21) as the νi.

It turns out that the lattice points of ∇̄∗ generate a sublattice M̄ of index 3 in M , and the

lattice refinement is generated by

w∗ =
1

3

(
ν̄1 + 2ν̄2 + 2ν̄7 + ν̄8

)
= e2 + e4 − e5. (4.7)
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Among the points of ∇∗ listed in eq. (3.23) only ν13 and ν14 are also lattice points of the

sublattice M̄ . In fact, we have ν̄13 = ν13 and ν̄14 = ν14. Hence, ∇̄∗ has 12 vertices and 15

lattice points; its dual ∇̄ = ∇̄1 + ∇̄2 has 42 lattice points among which 15 are vertices.10

Once we have the polytopes ∆̄∗ and ∇̄∗, we can construct X and X
∗

as complete

intersections entirely analogous to X̃ and X̃∗, see section 3. That is, using eq. (3.11), we

define

X = D̄0,1 ∩ D̄0,2, X
∗

= D̄∗
0,1 ∩ D̄∗

0,2 (4.9)

in terms of the nef partitions eq. (4.3) and (4.5), respectively. Here, D̄i and D̄∗
i denote the

divisors associated to the generators ρ̄i and ν̄i, respectively. The absence of fixed points of

the G1 action on the complete intersection X̃ is guaranteed by the fact that the resulting

polytope ∆̄∗ ⊂ N̄R has no additional lattice points [31]. Hence, X = X̃/G1 has a non-

trivial fundamental group π1(X) = Z3. Surprisingly, it turns out that the mirror X
∗

is

a free quotient as well. To see this recall that, as noticed above, the lattice points of ∇̄∗

generate a sublattice M̄ of index 3 in M . Furthermore, ∇̄∗ also has no additional lattice

points with respect to ∇∗. Therefore, there is a group G∗
1 ≃ Z3 acting torically on P∇∗ .

On the homogeneous coordinates this action is

g∗1 :
[
z1 : · · · : z12

]
7→

[
ζz1 : ζ2z2 : z3 : · · · : z6 : ζ2z7 : ζz8 : z9 : · · · : z12

]
. (4.10)

Hence, X
∗

= X̃∗/G∗
1 also has a non-trivial fundamental group π1(X

∗
) = Z3. Note that

this never happens for hypersurfaces in toric varieties [6]. Having the toric representation

of X and X
∗
, we can now compute their Hodge numbers. It turns out that

h1,1
(
X

)
= h1,2

(
X

)
= h1,1

(
X

∗)
= h1,2

(
X

∗)
= 7, (4.11)

in agreement with Part A [1], eq. (5.16).

4.2 The quotient by G2

We now turn to the G2 action, which does not act torically. Hence, we cannot, in principle,

find a toric variety containing X = X/G2 as we did for the G1 quotient above. However,

at least we have to ensure that X and X
∗

are G2-symmetric. This can be achieved via

suitable symmetries in the toric data.

The easy part of the toric data for X is the polytope ∆̄∗. The G2 action on the ambient

space permutes the homogeneous coordinates, see eq. (2.3b). In terms of toric geometry,

10Note that all of our polytopes differ from the non-free Z3×Z3 quotient of ∆∗ defined in [28], Proposition

7.1. In the notation of [31] their quotient is

∇∗ 6= P

0
B@

1 1 1 0 0 0 0 0

0 0 0 1 1 1 0 0

0 0 0 0 0 0 1 1

1
CA

2
64
3 0

0 3

1 1

3
75

,
Z3 : 0 1 2 0 0 0 0 0

Z3 : 0 0 0 0 1 2 0 0
(4.8)

and has 21 points and 8 vertices in the lattice N .
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this means that it permutes the corresponding points of the polytope. That is,11

g2 : ρ̄i 7→ ρ̄1+(i mod 3) ∀i ∈ {1, 2, 3},

g2 : ρ̄4 7→ ρ̄4, ρ̄5 7→ ρ̄5,

g2 : ρ̄5+i 7→ ρ̄6+(i mod 3) ∀i ∈ {1, 2, 3}.

(4.12)

It induces a mirror group action G∗
2 on X

∗
which is geometrical, rather than a quantum

symmetry as discussed in [48]. The action of G∗
2 is obviously the dual group action on the

dual lattice M , which again must be a symmetry of the relevant polytope ∇̄∗. We find

that

g∗2 : ν̄3k+i 7→ ν̄3k+1+(i mod 3) ∀k = 0, . . . , 3, i ∈ {1, 2, 3}. (4.13)

As a check on the mirror group action, note that the matrix of scalar products, see eq. (4.15)

below, is invariant. That is,

〈
g2(ρ̄l), g∗2(ν̄l′)

〉
=

〈
ρ̄l, ν̄l′

〉
∀ l, l′. (4.14)

By abuse of notation, we denote the corresponding cyclic permutation of homogeneous

coordinates by g∗2 as well. Using this action, we define the mirror of X to be X∗ = X
∗
/G∗

2.

This idea has already been used for the construction of mirrors of orbifolds of the quintic [49]

soon after the discovery of the first mirror construction by Greene and Plesser.

Following eq. (3.25), the equations for the Calabi-Yau complete intersections X and

X
∗

are defined by evaluating the matrix of scalar products 〈ρ̄i, ν̄j〉 + δl l′ , which are

〈 , 〉 + δl l′ ν̄1 ν̄2 ν̄3 ν̄4 ν̄5 ν̄6 ν̄13 ν̄7 ν̄8 ν̄9 ν̄10 ν̄11 ν̄12 ν̄14

ρ̄1 3 0 0 3 0 0 1 0 0 0 0 0 0 0

ρ̄2 0 3 0 0 3 0 1 0 0 0 0 0 0 0

ρ̄3 0 0 3 0 0 3 1 0 0 0 0 0 0 0

ρ̄4 1 1 1 0 0 0 0 0 0 0 1 1 1 1

ρ̄5 0 0 0 1 1 1 1 1 1 1 0 0 0 0

ρ̄6 0 0 0 0 0 0 0 3 0 0 3 0 0 1

ρ̄7 0 0 0 0 0 0 0 0 3 0 0 3 0 1

ρ̄8 0 0 0 0 0 0 0 0 0 3 0 0 3 1

(4.15)

The equations of X can now be read off from the columns of eq. (4.15), and one finds

F1 = (λ5t0 + λ6t1)(x
3
0 + x3

1 + x3
2) + (λ7t0 + λ8t1)x0x1x2, (4.16a)

F2 = (λ1t0 + λ4t1)(y
3
0 + y3

1 + y3
2) + (λ2t0 + λ3t1)y0y1y2, (4.16b)

where the G2-symmetry has been imposed. Note that the last monomial in each equation

corresponds to the vector 0 ∈ ∆̄l, l = 1, 2. Two of the eight coefficients λm can be fixed by

normalizing the equations, say λ4 = λ5 = 1, and three correspond to the symmetries of P1,

that is, SL(2) transformations of [t0 : t1]. Hence, we can, for example, set λ6 = λ7 = λ8 =

11We define the modulus operation such that (i mod 3) ∈ {0, 1, 2}.
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0. This leaves us with 3 complex structure deformations λ1, λ2, and λ3, see eqs. (2.2a)

and (2.2b).

The equations defining X∗ correspond to the rows of eq. (4.15), that is,

F ∗
1 = a1(z

3
1z3

4 + z3
2z3

5 + z3
3z

3
6)z13 + (a2z10z11z12z14 + a3z4z5z6z13)z1z2z3, (4.17a)

F ∗
2 = a4(z

3
7z3

10 + z3
8z3

11 + z3
9z3

12)z14 + (a5z4z5z6z13 + a6z10z11z12z14)z7z8z9, (4.17b)

where, again, invariance under G∗
2 has been imposed and the last monomial of each equation

comes from the lattice point 0 ∈ ∇̄l, , l = 1, 2. Both equations are homogeneous with

respect to all seven scaling degrees that follow from the linear relations eq. (3.21). Among

the twelve scalings of the coordinates zi, six are compatible with the cyclic permutations

g∗2 , see eq. (4.13). Subtracting the three G2 symmetric independent scalings among the

relations eq. (3.21), there remains one torus action that acts effectively on the parameters

plus two normalizations of the equations. As expected, the six parameters am of the

equations of X∗ thus become the 3 complex structure moduli.

So far, we only considered the polytopes ∆̄∗ and ∇̄∗. However, this is only part

of the toric data defining the manifolds X and X
∗
, respectively. In addition, we need

the triangulations and the corresponding exceptional sets. A change in the triangulation

corresponds to a flop of the toric variety. The very real danger is that not all, and perhaps

none, of the flopped Calabi-Yau manifolds are G2-symmetric. For X ⊂ P∆̄∗ this turns

out to be unproblematic, but for X
∗
⊂ P∇̄∗ we will find a condition for the choice of a

triangulation.

4.3 B-model on X

We now return to the discussion of the triangulations and the intersection ring of X .

The analogous, but technically much more involved discussion of X
∗

will be presented in

subsection 4.5.

For X everything is straightforward since the G1-quotient did not introduce addi-

tional lattice points in the associated polytope ∆̄∗. Therefore, just like for the polytope

∆∗ of the covering space X̃, there exists a unique triangulation. In particular the prim-

itive collections, the Stanley-Reisner ideal, and the ideal IX are identical to the ones in

eqs. (3.26), (3.33), and (3.34) since they are derived from the same triangulation. Moreover,

one can easily see that this triangulation is G2-invariant and, hence, X is G2 symmetric.

The only change is in the normalization of the intersection ring in eq. (3.36), since the

total volume has to be divided by 3 = |G1|. This can also be seen in eq. (4.4), where the

volume of the cone is now 3 instead of 1. Hence, on X the intersection ring and the second

Chern class are

J̄2
2 J̄3 = 1, J̄1J̄2J̄3 = 3, J̄2J̄

2
3 = 1,

c2

(
X

)
· J̄1 = 0, c2

(
X

)
· J̄2 = 12, c2

(
X

)
· J̄3 = 12. (4.18)

Comparing these intersection numbers with eq. (2.8), it is clear that the toric divisors

should be identified with the G1-invariant divisors on X as

J̄1 = φ, J̄2 = τ1, J̄3 = τ2. (4.19)
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The curves spanning the Mori cone on the cover turn out to be G1-invariant as well.

Therefore, the Mori cones NE(P∆̄∗) and NE(X)toric are identical to those in eqs. (3.44)

and (3.45), respectively.

Following the steps given in section 3 we now want to compute the B-model prepotential

F
B
X

∗

,0
, plug in the mirror map, and obtain the prepotential on X

F
np

X,0
(P,Q1, Q2, Q3, R1, R2, R3, b1). (4.20)

We immediately realize the following two caveats:

• We do not know how to incorporate the torsion curves H2(X, Z)tors = Z3 into the

toric mirror symmetry calculation.

• Of the 7 Kähler classes on X, only 3 are toric.

This means that only 3 out of the 7+1 variables in the prepotential are accessible, and the

remaining ones are set to one. Looking at the intersection numbers eq. (4.18), it is clear

that the 3 divisors are precisely the G2-invariant divisors on X , see eq. (2.8). Therefore,

these 3 variables must be those that map to the variables p, q, and r on X. By comparing

with eq. (2.11), we see that the corresponding variables on X are P , Q1, and R1. Hence,

we actually only compute

F
np

X,0
(P,Q1, 1, 1, R1, 1, 1, 1) =

∑

n1,n2,n3

nX
(n1,n2,n3)

Li3
(
Pn1Qn2

1 Rn3
1

)
. (4.21)

In effect, this means that the resulting instanton numbers are not just the instantons in a

single integral homology class, but the instanton numbers in a whole set of integral homol-

ogy classes. The instanton numbers sum over all curve classes that cannot be distinguished

by P,Q1, R1 ∈ Hom
(
H2(X, Z), C×

)
. Up to total degree 4 and the symmetry

nX
(n1,n2,n3)

= nX
(n1,n3,n2)

, (4.22)

the resulting instanton numbers are

nX
(1,0,0) = 27 nX

(1,0,1) = 108 nX
(1,0,2) = 378 nX

(1,0,3) = 1080

nX
(1,1,1) = 432 nX

(1,1,2) = 1512 nX
(2,0,1) = −54 nX

(2,0,2) = −756

nX
(2,1,1) = 864 nX

(3,0,1) = 9.

(4.23)

4.4 Instanton numbers of X

Knowing the prepotential on X, we now want to divide out the free G2 action and arrive at

the prepotential on X. Since we do not know the complete expansion but only eq. (4.21),

we have to set b1 = b2 = 1 in the descent equation (2.11). This yields

F
np
X,0

(
p, q, r, 1, 1) =

1

3
F

np

X,0

(
p, q, 1, 1, r, 1, 1, 1

)

=
∑

n1,n2,n3

nX
(n1,n2,n3)

Li3
(
pn1qn2rn3

)
.

(4.24)
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Up to the symmetry nX
(n1,n2,n3)

= nX
(n1,n3,n2)

, the non-vanishing instanton numbers for X

up to total degree 5 are

nX
(1,0,0) = 9 nX

(1,0,1) = 36 nX
(1,0,2) = 126 nX

(1,0,3) = 360

nX
(1,0,4) = 945 nX

(1,1,1) = 144 nX
(1,1,2) = 504 nX

(1,1,3) = 1440

nX
(1,2,2) = 1764 nX

(2,0,1) = −18 nX
(2,0,2) = −252 nX

(2,0,3) = −1728

nX
(2,1,1) = 288 nX

(2,1,2) = 3960 nX
(3,0,1) = 3 nX

(3,0,2) = 252

nX
(3,1,1) = 756,

(4.25)

Unfortunately, this direct calculation misses the torsion information and only yields the

expansion F
np
X,0(p, q, r, 1, 1). The b1 dependence was lost because the toric methods do not

yield this part, and the b2 dependence was lost because the relevant divisor on X was not

toric. Comparing with the full expansion of the prepotential

F
np
X,0

(
p, q, r, b1, b2) =

∑

n1,n2,n3
m1,m2

nX
(n1,n2,n3,m1,m2) Li3

(
pn1qn2rn3bm1

1 bm2
2

)
, (4.26)

see Part A eq. (8.39), this means we only obtain the sum of the instanton numbers over all

torsion classes

nX
(n1,n2,n3)

=
2∑

m1,m2=0

nX
(n1,n2,n3,m1,m2). (4.27)

Clearly, this destroys the torsion information, that is, the instanton numbers nX
(n1,n2,n3)

do

not depend on the torsion part of the integral homology. For comparison purposes, we list

the instanton numbers nX
(n1,n2,n3)

for 0 ≤ n1, n2, n3 ≤ 5 in table 2.

4.5 B-model on X
∗

We now study the mirror X
∗
, which sits in a more complicated ambient toric variety.

Consequently, the analysis is more involved. The big advantage, however, will turn out to

be that all h11(X
∗
) = 7 Kähler moduli are toric, which will enable us to obtain the full

instanton expansion.

Since the polytope ∇̄∗ in eq. (4.6) is not simplicial, we have to specify a resolution

of the singularities, that is, a triangulation T (∇̄∗). Moreover, not any triangulation will

do, but we have to make sure that it is compatible with the action of the permutation

group G∗
2. While a tedious technicality, the existence of such a resolution has to be shown

in order to establish the existence of a geometrical mirror family of X. In particular, we

show in appendix A that there is no projective resolution of the ambient space among the

720 coherent star triangulations of ∇̄∗ that respects the permutation symmetry eq. (4.13).

In other words, if one demands G∗
2 symmetry then the ambient toric variety cannot be

chosen to be Kähler, but only a complex manifold. Clearly, in that case there is no Kähler

cone and the usual toric mirror symmetry algorithm does not work. What comes to the

rescue is that there are two classes of non-symmetric projective resolutions for which the

symmetry-violating exceptional sets do not intersect X
∗
. Hence the complete intersection

is G2-symmetric, even though the ambient space is not.
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nX
(0,n2 ,n3) nX

(3,n2,n3)

@
@@n2

n3
0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 0 0 0 0 0

2 0 0 0 0 0 0

3 0 0 0 0 0 0

4 0 0 0 0 0 0

5 0 0 0 0 0 0

@
@@n2

n3
0 1 2 3 4 5

0 0 3 252 4158 40173 287415

1 3 756 15390 164280 1259685 7763364

2 252 15390 426708 5427684 46537092 310465062

3 4158 164280 5427684 73971360 657552966 4487097816

4 40173 1259685 46537092 657552966 5948103483 41016575313

5 287415 7763364 310465062 4487097816 41016575313 284581389204

nX
(1,n2 ,n3) nX

(4,n2,n3)

@
@@n2

n3
0 1 2 3 4 5

0 9 36 126 360 945 2268

1 36 144 504 1440 3780 9072

2 126 504 1764 5040 13230 31752

3 360 1440 5040 14400 37800 90720

4 945 3780 13230 37800 99225 238140

5 2268 9072 31752 90720 238140 571536

@
@@n2

n3
0 1 2 3 4 5

0 0 0 −144 −6048 −107280 −1235520

1 0 −306 −12348 −207000 −2273400 −19066500

2 −144 −12348 348480 14609520 235219680 2505155400

3 −6048 −207000 14609520 520226784 8245864800 87989812560

4 −107280 −2273400 235219680 8245864800 131759049600 1417949658000

5 −1235520 −19066500 2505155400 87989812560 1417949658000 15365394415800

nX
(2,n2 ,n3) nX

(5,n2,n3)

@
@@n2

n3
0 1 2 3 4 5

0 0 −18 −252 −1728 −9000 −38808

1 −18 288 3960 27648 143748 620928

2 −252 3960 54432 380160 1976472 8537760

3 −1728 27648 380160 2654208 13799808 59609088

4 −9000 143748 1976472 13799808 71748000 309920688

5 −38808 620928 8537760 59609088 309920688 1338720768

@
@@n2

n3
0 1 2 3 4 5

0 0 0 45 5670 189990 3508920

1 0 36 13140 474840 8793648 111499020

2 45 13140 1112886 38961252 777759975 10723515300

3 5670 474840 38961252 1952428464 47357606430 732897531720

4 189990 8793648 777759975 47357606430 1237373786439 19911043749420

5 3508920 111499020 10723515300 732897531720 19911043749420 327006066948660

Table 2: Summed instanton numbers nX
(n1,n2,n3) =

∑
m1,m2

nX
(n1,n2,n3,m1,m2)

(hence not distinguishing torsion) computed by mirror symmetry.

The table contains all non-vanishing instanton numbers for 0 ≤ n1, n2, n3 ≤ 6.
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We conclude that the extended Kähler moduli space of X
∗

contains two symmetric

phases. We will denote these two classes of triangulations by T± = T±(∇̄∗), see appendix A.

In fact, the two phases are topologically distinct, and only the triangulation T+ describes

the threefold X
∗

that we are interested in. In appendix B, we will investigate the other

triangulation T− which describes a flop of X
∗
.

Following subsection 3.3, given the triangulation T+, we can determine the primitive

collections. This immediately yields the Stanley-Reisner ideal

ISR =
〈
D̄1D̄13, D̄2D̄4, D̄2D̄13, D̄3D̄4, D̄3D̄5, D̄3D̄13, D̄4D̄10, D̄4D̄11, D̄4D̄12,

D4D̄14, D̄5D̄10, D̄5D̄11, D̄5D̄12, D̄5D̄14, D̄6D̄10, D̄6D̄11, D̄6D̄12,

D̄6D̄14, D̄13D̄10, D̄13D̄11, D̄13D̄12, D̄13D̄14, D̄7D̄14, D̄8D̄10, D̄8D̄12,

D̄8D̄14, D̄9D10, D̄9D̄14, D̄1D̄2D̄3, D̄1D̄2D̄6,D1D̄5D̄6, D̄4D̄5D̄6,

D̄7D̄8D̄9, D̄7D̄9D̄11, D̄7D̄11D̄12, D̄10D̄11D̄12

〉
(4.28)

where we dropped the superscript ∗ on D̄ for ease of notation. From this, in turn, we

obtain the generators l̄
(a)
+ of the Mori cone NE(P∇̄∗):

l̄
(1)
+ =( 0, 0, 0, 0, 0, 0, 1, 0, 0,−1, 0, 0, 0, 1)

l̄
(2)
+ =( 1, 0, 0,−1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0)

l̄
(3)
+ =(−1, 1, 0, 1,−1, 0, 0, 0, 0, 0, 0, 0, 0, 0)

l̄
(4)
+ =( 0,−1, 1, 0, 1,−1, 0, 0, 0, 0, 0, 0, 0, 0)

l̄
(5)
+ =( 0, 0,−1, 0, 0, 1, 0,−1, 0, 0, 1, 0, 0, 0)

l̄
(6)
+ =( 0, 0, 0, 0, 0, 0,−1, 0, 1, 1, 0,−1, 0, 0)

l̄
(7)
+ =( 0, 0, 0, 0, 0, 0, 0, 1,−1, 0,−1, 1, 0, 0)

l̄
(8)
+ =( 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0,−3, 0)

l̄
(9)
+ =( 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0,−3).

(4.29)

A dual basis for the generators of the Kähler cone K(P∇̄∗) is

K̄1 = D̄13 + 2 D̄1 − D̄2 − D̄3 + D̄9 + D̄7 + D̄8 + 3 D̄4,

K̄2 = 3 D̄1 + D̄13 + 3 D̄4,

K̄3 = D̄13 + 2 D̄1 + 3 D̄4,

K̄4 = D̄13 + 2 D̄1 − D̄2 + 3 D̄4,

K̄5 = D̄13 + 2 D̄1 − D̄2 − D̄3 + 3 D̄4,

K̄6 = D̄13 + 2 D̄1 − D̄2 − D̄3 + D̄9 + D̄8 + 3 D̄4,

K̄7 = D̄8 + D̄13 + 2 D̄1 − D̄2 − D̄3 + 3 D̄4,

K̄8 = D̄4 + D̄1,

K̄9 = D̄10 + D̄7.

(4.30)
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The Calabi-Yau complete intersection X
∗

is then defined by X
∗

= K̄1K̄2. It turns out that

the divisors D̄13, D̄14 do not intersect X
∗
. Therefore, all

h1,1
toric

(
X

∗)
= h1,1

(
X

∗)
= 7 (4.31)

Kähler moduli are realized torically. Since there are two divisors that do not intersect,

finding the Mori cone is somewhat subtle. First, we have to restrict the lattice of linear

relations to the sublattice orthogonal to these two directions. For the generators of the

toric Mori cone NE(X
∗
)toric, this means that l̄

(1)
+ → 3l̄

(1)
+ + l̄

(9)
+ , l̄

(2)
+ → 3l̄

(2)
+ + l̄

(8)
+ and that

we drop l̄
(8)
+ , l̄

(9)
+ as well as the entries corresponding to intersections with D̄13, D̄14. In

addition, we prepend the intersection numbers with D̄0,1 and D̄0,2. This yields

l̄
(1)
+ =(−3, 0; 0, 0, 0, 0, 0, 0, 3, 0, 0,−2, 1, 1)

l̄
(2)
+ =( 0,−3; 3, 0, 0,−2, 1, 1, 0, 0, 0, 0, 0, 0)

l̄
(3)
+ =( 0, 0;−1, 1, 0, 1,−1, 0, 0, 0, 0, 0, 0, 0)

l̄
(4)
+ =( 0, 0; 0,−1, 1, 0, 1,−1, 0, 0, 0, 0, 0, 0)

l̄
(5)
+ =( 0, 0; 0, 0,−1, 0, 0, 1, 0,−1, 0, 0, 1, 0)

l̄
(6)
+ =( 0, 0; 0, 0, 0, 0, 0, 0,−1, 0, 1, 1, 0,−1)

l̄
(7)
+ =( 0, 0; 0, 0, 0, 0, 0, 0, 0, 1,−1, 0,−1, 1).

(4.32)

The dual basis of divisors is

J̄∗
1 =

1

3
K̄2

1 K̄2, J̄∗
2 =

1

3
K̄1K̄

2
2 , J̄∗

5 = K̄1K̄2K̄5,

J̄∗
3 = K̄1K̄2K̄3, J̄∗

4 = K̄1K̄2K̄4, (4.33)

J̄∗
6 = K̄1K̄2K̄6, J̄∗

7 = K̄1K̄2K̄7.

We now try to identify this basis J̄∗
1 , . . . , J̄∗

7 of divisors on X
∗

with the basis

{φ, τ1, υ1, ψ1, τ2, υ2, ψ2} of divisors on X in eq. (2.5). It turns out that there is more than

one way to identify the bases if one only wants to preserve the triple intersection numbers.

To obtain a unique answer, we also need to identify the actions by G∗
2 and G2 as well.

First, the G∗
2 action on H2(P∇̄∗, Z) is defined by eq. (4.13). Using the linear equivalence

relations

2D̄1 − D̄2 − D̄3 + 2D̄4 − D̄5 − D̄6 = 0

−D̄1 + 2D̄2 − D̄3 − D̄4 + 2D̄5 − D̄6 = 0

2D̄7 − D̄8 − D̄9 + 2D̄10 − D̄11 − D̄12 = 0

−D̄2 + D̄3 − D̄5 + D̄6 − D̄8 + D̄9 − D̄11 + D̄12 = 0

−D̄4 − D̄5 − D̄6 + D̄10 + D̄11 + D̄12 − D̄13 + D̄14 = 0

(4.34)

and the definition eq. (4.33), one can compute the induced group action on H2(X
∗
, Z). We
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find

g∗2




J̄∗
1

J̄∗
2

J̄∗
3

J̄∗
4

J̄∗
5

J̄∗
6

J̄∗
7




=




1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 3 −1 1 0 0 0

0 3 −1 0 1 0 0

0 0 0 0 1 0 0

3 0 0 0 1 0 −1

0 0 0 0 1 1 −1







J̄∗
1

J̄∗
2

J̄∗
3

J̄∗
4

J̄∗
5

J̄∗
6

J̄∗
7




. (4.35)

Second, recall that the G2 action on the divisors of X
∗

is

g2




φ

τ1

υ1

ψ1

τ2

υ2

ψ2




=




1 0 0 0 0 0 0

0 1 0 0 0 0 0

1 3 0 −1 0 0 0

0 3 1 −1 0 0 0

0 0 0 0 1 0 0

1 0 0 0 3 0 −1

0 0 0 0 3 1 −1







φ

τ1

υ1

ψ1

τ2

υ2

ψ2




, (4.36)

see Part A eq. (8.54).

The essentially unique12 identification of divisors on X
∗

and X then turns out to be

J̄∗
1 = τ1, J̄∗

2 = τ2, J̄∗
3 = ψ2, J̄∗

4 = υ2,

J̄∗
5 = φ, J̄∗

6 = 3τ1 + υ1 − ψ1 = g2(ψ1), J̄∗
7 = υ1. (4.37)

Note that we are identifying divisors on X
∗

with divisors on X in eq.(4.37), something

that one would usually not do. However, in view of the anticipated self-mirror property,

X
∗ ∼= X, this is a sensible thing to try to attempt. And, indeed, the identification above

is an isomorphism of the intersection rings.

Regardless of this identification, we now continue to apply mirror symmetry. First,

the second Chern class is

c2

(
X

∗)
· J̄∗

1 = 12, c2

(
X

∗)
· J̄∗

5 = 0, c2

(
X

∗)
· J̄∗

2 = 12,

c2

(
X

∗)
· J̄∗

3 = c2

(
X

∗)
· J̄∗

6 = 24, c2

(
X

∗)
· J̄∗

4 = c2

(
X

∗)
· J̄∗

7 = 12. (4.38)

Using this information, we now compute the B-model prepotential

F
B
X,0

(q1, . . . , q7) = 3q5 + 3q4q5 +
3

8
q2
5 + 3q5q7 + 3q7q5q6 + 3q4q5q7 +

1

9
q3
5

+ 3q3q4q5 +
3

8
q2
5q

2
7 + 3q3q4q5q7 +

3

8
q2
4q

2
5

+ 3q4q3q2q5 + 3q7q5q4q6 + 3q1q5q6q7 +
3

64
q4
5 + O(q5).

(4.39)

Finally, we insert the mirror map and obtain the A-model prepotential on X
∗
. Since we

already identified the bases J̄∗
1 , . . . , J̄∗

7 with the divisors on X, we will use the same names

12Up to the ĝ2 and g−1
2 ĝ2 symmetry.
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(but with an added ∗ superscript) for the Fourier-transformed variables to expand the

prepotential. With this notation, we obtain

F
np

X
∗

,0
(P ∗, Q∗

1, Q
∗
2, Q

∗
3, R

∗
1, R

∗
2, R

∗
3, 1) = 3P ∗ +

3

8
P ∗2 +

1

9
P ∗3 +

3

64
P ∗4 +

3

125
P ∗5

+ 3P ∗Q∗
2 +

3

8
P ∗2Q∗2

2 + 3P ∗Q∗
2Q

∗
3 + 3P ∗R∗

2 +
3

8
P ∗2R∗2

2 + 3P ∗R∗
2Q

∗
2

+ 3P ∗R∗
2Q

∗
2Q

∗
3 + 3P ∗R∗

2R
∗
3 + 3P ∗R∗

2R
∗
3Q

∗
2 + 3P ∗R∗

2R
∗
3Q

∗
2Q

∗
3

+ 3P ∗Q∗
1R

∗
2R

∗
3 + 3P ∗Q∗

1R
∗
2R

∗
3Q

∗
2 + 9P ∗Q∗

1R
∗
2R

∗
3R

∗
3 + 3P ∗Q∗

2Q
∗
3R

∗
1

+ 3P ∗Q∗
2Q

∗
3R

∗
1R

∗
2 + 9P ∗Q∗

2Q
∗
3R

∗
1Q

∗
3 +

(
total degree ≥ 6

)
,

(4.40)

see also Part A eq. (8.64). The instanton numbers on X
∗

are the expansion coefficients

F
np

X
∗

,0
(P ∗, Q∗

1, Q
∗
2, Q

∗
3, R

∗
1, R

∗
2, R

∗
3, 1)

=
∑

n1,...,n7

nX
∗

(n1,n2,n3,n4,n5,n6,n7)
Li3

(
P ∗n1Q∗n2

1 Q∗n3
2 Q∗n4

3 R∗n5
1 R∗n6

2 R∗n7
3

)
. (4.41)

We see that we almost get the complete instanton expansion eq. (2.10), we only miss the

expansion in the b∗1 variable which is not computed by the toric mirror symmetry algorithm.

Up to total degree 5, the instanton numbers are

nX
∗

(1,0,0,0,0,0,0) =3 nX
∗

(1,0,0,0,0,1,0) =3 nX
∗

(1,0,0,0,0,1,1) =3 nX
∗

(1,0,1,0,0,0,0) =3

nX
∗

(1,0,1,0,0,1,0) =3 nX
∗

(1,0,1,0,0,1,1) =3 nX
∗

(1,0,1,1,0,0,0) =3 nX
∗

(1,0,1,1,0,1,0) =3

nX
∗

(1,0,1,1,0,1,1) =3 nX
∗

(1,1,0,0,0,1,2) =9 nX
∗

(1,0,1,2,1,0,0) =9 nX
∗

(1,0,1,1,1,1,0) =3

nX
∗

(1,1,1,0,0,1,1) =3 nX
∗

(1,1,0,0,0,1,1) =3 nX
∗

(1,0,1,1,1,0,0) =3.

(4.42)

Finally, let us take a look at the G∗
2 action, see eq. (4.13). Of the 7 generators of

the toric Mori cone, eq. (4.32), only the 3 generators l̄
(1)
+ , l̄

(2)
+ and l̄

(5)
+ are invariant. Not

surprisingly, the dual G∗
2-invariant divisors

J̄∗
5 = φ, J̄∗

1 = τ1, J̄∗
2 = τ2 (4.43)

were identified with the G2-invariant divisors on X in eq. (4.37). Therefore, only 3 Kähler

parameters survive to the quotient X∗ = X
∗
/G∗

2, and we have

h1,1
(
X

)
= h1,2

(
X

)
= h1,1

(
X∗

)
= h1,2

(
X∗

)
= 3. (4.44)

4.6 Instanton numbers of X∗

Now that we have the expression eq. (4.41) for the prepotential on X
∗
, we can again apply

a suitable variable substitution
{
P ∗, Q∗

1, Q
∗
2, Q

∗
3, R

∗
1, R

∗
2, R

∗
3, b

∗
1, b

∗
2

}
−→

{
p∗, q∗, r∗, b∗1, b

∗
2

}
(4.45)

and obtain the prepotential on the quotient X∗ = X
∗
/G∗

2. The correct way to replace

the variables is determined by the group action on the homology and cohomology as we
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(n1, n2, n3) nX∗

(n1,n2,n3,0) nX∗

(n1,n2,n3,1) nX∗

(n1,n2,n3,2) nX
(n1,n2,n3)

(1, 0, 0) 3 3 3 9

(1, 0, 1) 12 12 12 36

(1, 0, 2) 42 42 42 126

(1, 0, 3) 120 120 120 360

(1, 1, 1) 48 48 48 144

(1, 1, 2) 168 168 168 504

(2, 0, 1) −6 −6 −6 −18

(2, 0, 2) −84 −84 −84 −252

(2, 1, 1) 96 96 96 288

(3, 0, 1) 3 0 0 3

Table 3: Instanton numbers nX∗

(n1,n2,n3,m2)
computed by toric mirror symmetry. They are invariant

under the exchange n2 ↔ n3, so we only display them for n2 ≤ n3.

explained in Part A. Having computed the G∗
2-action in eq. (4.35), we determine the descent

equation for the prepotential to be13

F
np
X∗,0

(
p∗, q∗, r∗, b∗1, b

∗
2) =

1

|G∗
2|

F
np

X
∗

,0

(
p∗, q∗, b∗2, b

∗
2, r

∗, b∗22 , b∗22 , b∗1
)
. (4.46)

Using the series expansion of the prepotential for b∗1 = 1 on X
∗

from subsection 4.5, we

now find that

F
np
X∗,0(p

∗, q∗, r∗, 1, b∗2) =

2∑

j=0

3 ×
(

Li3(p
∗b∗j2 )+4Li3(p

∗q∗b∗j2 )+4Li3(p
∗r∗b∗j2 )

+14Li3(p
∗q∗2b∗j2 )+16Li3(p

∗q∗r∗b∗j2 )+14Li3(p
∗r∗2b∗j2 )

+40Li3(p
∗q∗3b∗j2 )+56Li3(p

∗q∗2rb∗j2 )+56Li3(p
∗q∗r2b∗j2 )

+40Li3(p
∗r∗3b∗j2 )+105Li3(p

∗q∗4b∗j2 )+160Li3(p
∗q∗3r∗b∗j2 )

−2Li3(p
∗2q∗b∗j2 )−2Li3(p

∗2r∗b∗j2 )

−28Li3(p
∗2q∗2b∗j2 )+32Li3(p

∗2q∗r∗b∗j2 )−28Li3(p
∗2r∗2b∗j2 )

)

+ 3Li3(p
∗3q∗) + 3Li3(p

∗3r∗)

+
(
total p∗, q∗, r∗-degree ≥ 5

)
.

(4.47)

The corresponding instanton numbers

F
np
X∗,0(p

∗, q∗, r∗, 1, b∗2) =
∑

n1,n2,n3,m2

nX∗

(n1,n2,n3,m2) Li3
(
p∗n1q∗n2r∗n3b∗m2

2

)
(4.48)

are listed in table 3.

13Interestingly, eq. (4.46) turns out to be exactly analogous to eq. (2.11), even though the identification

of divisors on X
∗

and X is not just a relabeling of divisors.
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For comparison purposes, we list the summed instanton numbers on X as well, see

eq. (4.27). One observes that the sum over the more refined instanton numbers on X∗

equals the summed instanton number on X, another clue towards X being self-mirror.

4.7 Instanton numbers assuming the self-mirror property

So far, we have alluded to X being possibly self-mirror, but not actually made use of this

property. Now we are going to assume the self-mirror property and, hence, obtain the

prepotential on X as

F
np
X,0(p, q, r, b1, b2) = F

np
X∗,0(p, q, r, b1, b2). (4.49)

Note that at linear and quadratic order in p we can actually recover the b1, b2 expansion

from the summed instanton numbers in subsection 4.4 and the factorization which we will

prove in section 6.

In contrast, for the prepotential terms at order p3 we have to use the X∗ prepotential

to obtain the b2 expansion from eq. (4.47). Since this is based on a toric computation

on X
∗
, we do not directly obtain the b1 expansion. However, note that the fact that g1

acted torically, eq. (2.3a), and g2 non-torically, eq. (2.3b), is just a consequence of the

choice of coordinate system on P2 ×P1 ×P2. By a suitable coordinate choice, we could

have made any one of the four Z3 subgroups of G = Z3 × Z3 act torically. Therefore, any

combination of b1, b2 other than 1 = b0
1b

0
2 has to occur in the same way in the complete

series expansion of the prepotential. We conclude that the prepotential can only depend

on b1 and b2 through the combinations

1,

2∑

i,j=0

bi
1b

j
2. (4.50)

This observation lets us recover the full b1, b2 expansion of the prepotential. To summarize,

we obtain

F
np
X∗,0(p, q, r, b1, b2) =

2∑

i,j=0

(
Li3(pbi

1b
j
2)+4Li3(pqbi

1b
j
2)+4Li3(prbi

1b
j
2)

+14Li3(pq2bi
1b

j
2)+16Li3(pqrbi

1b
j
2)+14Li3(pr2bi

1b
j
2)

+40Li3(pq3bi
1b

j
2)+56Li3(pq2rbi

1b
j
2)+56Li3(pqr2bi

1b
j
2)

+40Li3(pr3bi
1b

j
2)+105Li3(pq4bi

1b
j
2)+160Li3(pq3rbi

1b
j
2)

+196Li3(pq2r2bi
1b

j
2)+160Li3(pqr3bi

1b
j
2)+105Li3(pr4bi

1b
j
2)

−2Li3(p
2qbi

1b
j
2)−2Li3(p

2rbi
1b

j
2)−28Li3(p

2q2bi
1b

j
2)

+32Li3(p
2qrbi

1b
j
2)−28Li3(p

2r2bi
1b

j
2)−192Li3(p

2q3bi
1b

j
2)

+440Li3(p
2q2rbi

1b
j
2)+440Li3(p

2qr2bi
1b

j
2)−192Li3(p

2r3bi
1b

j
2)

)

+ 3Li3(p
3q) + 3Li3(p

3r) + 9Li3(p
3q2) + 27

2∑

i,j=0

Li3(p
3q2bi

1b
j
2)

+ 9Li3(p
3q2) + 27

2∑

i,j=0

Li3(p
3q2bi

1b
j
2)

+ 27Li3(p
3qr) + 81

2∑

i,j=0

Li3(p
3qrbi

1b
j
2) +

(
total p, q, r-degree ≥ 6

)
.

(4.51)

– 31 –



J
H
E
P
1
0
(
2
0
0
7
)
0
2
3

nX
(1,n2,n3,0,0) nX

(1,n2,n3,m1,m2), (m1,m2) 6= (0, 0)

@
@

@n2

n3
0 1 2 3 4

0 1 4 14 40 105

1 4 16 56 160

2 14 56 196

3 40 160

4 105

@
@

@n2

n3
0 1 2 3 4

0 1 4 14 40 105

1 4 16 56 160

2 14 56 196

3 40 160

4 105

nX
(2,n2,n3,0,0) nX

(2,n2,n3,m1,m2), (m1,m2) 6= (0, 0)

@
@

@n2

n3
0 1 2 3

0 0 −2 −28 −192

1 −2 32 440

2 −28 440

3 −192

@
@

@n2

n3
0 1 2 3

0 0 −2 −28 −192

1 −2 32 440

2 −28 440

3 −192

nX
(3,n2,n3,0,0) nX

(3,n2,n3,m1,m2), (m1,m2) 6= (0, 0)

@
@

@n2

n3
0 1 2

0 0 3 36

1 3 108

2 36

@
@

@n2

n3
0 1 2

0 0 0 27

1 0 81

2 27

Table 4: Instanton numbers nX
(n1,n2,n3,m1,m2)

computed by mirror symmetry. The table contains

all non-vanishing instanton numbers for n1 + n2 + n3 ≤ 5. The entries marked in bold depend

non-trivially on the torsion part of their respective homology class.

Obtaining all of these terms required a computation of F
B
X,0

in eq. (4.39) up to total degree

23 in the 7 variables, which is close to the limit of what can be done with current desktop

computers.

We list the instanton numbers in table 4. Observe that the instanton numbers some-

times do depend on the torsion part of their homology class.

5. The self-mirror property

When one speaks of a Calabi-Yau manifold Y being self-mirror, one has to indicate which
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level of invariants one is referring to. In particular, one might think of four types of

invariants that are natural from the point of view of string theory. The weakest level

is just the Euler number. In general, exchanging complex structure and Kähler moduli

changes the sign of χ(Y ) = 2h11(Y )− 2h21(Y ). Therefore, a necessary condition for Y and

its mirror Y ∗ to be equal is obviously that

χ(Y ) = −χ(Y ∗) = 0. (5.1)

This level of invariants, however, is much too crude and therefore insufficient. A much

stronger level is based on the fact that the cohomology groups of even degree come with

an integral lattice structure and form a ring, and therefore have a product. Because of

Poincaré duality, that is, H2(Y ) = H4(Y )∨, it is sufficient to look at H2(Y ). There is a

product H2(Y )×H2(Y ) → H2(Y ) whose structure constants κijk are the triple intersection

numbers. These intersection numbers are finer invariants than just the dimensions of the

cohomology groups, and a self-mirror Calabi-Yau threefold should satisfy

κijk(Y ) = κijk(Y
∗). (5.2)

For simply connected threefolds with torsion-free homology a theorem of Wall [41] states

that the cohomology groups with the intersection product κijk(Y ) together with the second

Chern class c2(Y ) determine the diffeomorphism type of Y .

If, however, Y and Y ∗ have non-trivial fundamental groups then we cannot conclude

that easily that they are diffeomorphic. But the non-trivial fundamental group is often

reflected in torsion in homology (for example if π1(Y ) is Abelian). In that case, the

conjecture of [6] says that for any Calabi-Yau threefold Z

H3
(
Z, Z

)
tors

≃ H2
(
Z∗, Z

)
tors

, H2
(
Z, Z

)
tors

≃ H3
(
Z∗, Z

)
tors

. (5.3)

Therefore, a self-mirror manifold Y = Y ∗ is expected to satisfy

H2
(
Y, Z

)
tors

≃ H3
(
Y, Z

)
tors

. (5.4)

Of the many spaces Y satisfying eq. (5.1) there are only a few which also satisfy eq. (5.2).

So far we only considered classical topology, but we know that the ring H2(Y ) expe-

riences quantum corrections when going far away from the large volume limit. At small

volume the intersection numbers are replaced by the three-point functions Cijk(q) of (topo-

logical) conformal field theory in eq. (3.53). In the large volume limit q goes to zero and the

Cijk(q) go to κijk, as expected. The Cijk(q) are characterized by the genus zero instanton

numbers n
(0)
d = nd. In mathematical terms, these are resummations of the Gromow-Witten

invariants of Y and characterize the symplectic structure of Y . This level of invariants is

even stronger than the cohomology ring, since there are examples of diffeomorphic mani-

folds which have different Calabi-Yau structures, i.e. different n
(0)
d [50, 51, 31]. Therefore,

a self-mirror Calabi-Yau threefold Y must satisfy

n
(0)
d (Y ) = n

(0)
d (Y ∗). (5.5)
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One can go even further and couple the topological conformal field theory to topological

gravity and define higher genus instanton numbers n
(g)
d , where now

n
(g)
d (Y ) = n

(g)
d (Y ∗), g > 0 (5.6)

has to hold. These invariants are very difficult to compute, however see [52, 53] for recent

progress. We do not know whether they contain more information about the symplectic

structure than the genus zero invariants. In other words, there are presently no examples

known whose n
(g)
d agree for g = 0 but differ for g > 0.

Now, one can start with any Y and use some method to construct the mirror Y ∗.

Among these are the Greene-Plesser construction in conformal field theory, or its geometric

generalizations by Batyrev and Borisov for complete intersections in toric varieties. Then,

to show that Y is self-mirror one proceeds to compute the various invariants. The simplest

condition, eq. (5.1), can directly be checked in terms of the toric data. This concretely

means that one starts with a mirror pair Y and Y ∗ satisfying eq. (5.1) and checks whether

eqs. (5.2), (5.4), (5.5), and (5.6) are satisfied. In fact, in section 4 we collected a large

amount of evidence in favor of the claim that X and its Batyrev-Borisov mirror threefold

X∗ are the same. Indeed, eqs. (3.24), (4.11) and (4.44) show that X̃ , X, and X satisfy

by construction the constraint eq. (5.1) on the Euler number. More interestingly, by

the identifications found in eqs. (4.37) and (4.43) we observed that the condition on the

intersection ring, eq. (5.2), is satisfied for X and X, respectively. Next, eq. (4.25) and

table 3 show that X also fulfils the requirement eq. (5.5) on the genus zero instanton

numbers. It would be very interesting to see whether also the condition eq. (5.6) for higher

genus curves can be met.

Finally, we consider the torsion in cohomology. In Part A section 5we have shown that

H3
(
X, Z

)
tors

≃ H2
(
X, Z

)
tors

≃ Z3 ⊕ Z3, (5.7)

as we expect from a self-mirror threefold. Moreover, we can actually compute the fun-

damental group of the Batyrev-Borisov mirror independently. For that, first notice that

the quotient X
∗

= X̃∗/G∗
1 is fixed-point free, see subsection 4.2. The mirror permutation

G∗
2 on X

∗
acts freely as well. Therefore, both X and X∗ are free quotients by a group

isomorphic to Z3 ⊕ Z3, thus their fundamental groups are

π1

(
X

)
≃ π1

(
X∗

)
≃ Z3 ⊕ Z3. (5.8)

Moreover, on can easily show that on a proper14 Calabi-Yau threefold Z one has

H2(Z, Z)tors = π1(Z)ab, the Abelianization of the fundamental group. Hence, we see that

H3(X, Z)tors ≃ Z3 ⊕ Z3 ≃ H2(X∗, Z)tors (5.9)

and the first of eq. (5.3) is true. This provides the first evidence for the conjecture of [6]

in a context other than toric hypersurfaces.

14A proper Calabi-Yau threefold has holonomy group the full SU(3). In particular, this implies that the

fundamental group is finite.
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Another point of view is that there is a geometrical or rather combinatorial reason

for the self-mirror property in this case. From eqs. (3.20) and (3.23) one can easily see

that the lattice points νi, ν6+i, ν13, ν14, i = 1, . . . , 3, span a sub-polytope of ∇∗ satisfying

the same linear relations as all the lattice points ρi of ∆∗ in eq. (3.7). Hence, this sub-

polytope is isomorphic to ∆∗. The same is true for the polytopes ∇̄∗ and ∆̄∗. The toric

variety P∇̄∗ which is the ambient space of X
∗

can therefore be regarded as a blow-up of

a quotient of P∆̄∗, the ambient space of X . Actually, this blow-up makes all 7 divisors of

X
∗

toric. Similarly, P∇∗ can be regarded as a blow-up of a quotient of P∆∗. As shown

in subsection 3.3 this entails that all 19 Kähler moduli of X̃∗ are realized torically. Note

that it is possible that the mirror polytopes ∆∗ and ∇∗ are actually isomorphic. In fact,

for toric hypersurfaces there are 41, 710 self-dual polytopes [54]. The novel feature in our

case is that non-isomorphic polytopes lead to self-mirror complete intersections, consistent

with the nef partitions.

6. Factorization vs. the (3, 1, 0, 0, 0) curve

One interesting observation is that the prepotential F
np
X,0 at order p, see eq. (4.51) in this

paper and eq. (8.34) in Part A [1], factors into
∑2

i,j=0 bi
1b

j
2 times a function of p, q, r only.

This means that the instanton number for any pseudo-section (curve contributing at order

p) does not depend on the torsion part of its homology class. In other words, for any

pseudo-section there are 8 other pseudo-sections with the same class in H2(X, Z)free and

together filling up all of H2(X, Z)tors = Z3 ⊕ Z3. In contrast, this factorization does not

hold at order p3. For example,

F
np
X,0(p, q, r, b1, b2) = · · ·+ 3p3q

+ 0
(
b1 + b2

1 + b2 + b1b2 + b2
1b2 + b2

2 + b1b
2
2 + b2

1b
2
2

)
p3q

+ · · · .

(6.1)

The purpose of this subsection is to understand this behavior.

First, the factorization of the prepotential at any order of p not divisible by 3 follows

from an extra symmetry that we have not utilized so far. The covering space X̃ is, in addi-

tion to eqs. (2.3a) and (2.3b), also invariant under another Ĝ = Z3 × Z3 action generated

by (ζ def= e
2πi
3 )

ĝ1 :





[x0 : x1 : x2] 7→ [x0 : ζx1 : ζ2x2]

[t0 : t1] 7→ [t0 : t1] (no action)

[y0 : y1 : y2] 7→ [y0 : y1 : y2] (no action)

(6.2a)

and

ĝ2 :





[x0 : x1 : x2] 7→ [x1 : x2 : x0]

[t0 : t1] 7→ [t0 : t1] (no action)

[y0 : y1 : y2] 7→ [y0 : y1 : y2] (no action)

(6.2b)

This symmetry has fixed points and, therefore, cannot be used if one is looking for a

smooth quotient of X̃ . However, it commutes with G and hence descends to a Ĝ = Z3 × Z3
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symmetry of X (with fixed points). Clearly, the instanton sum must observe this additional

geometric symmetry. To make use of this symmetry, we have to express its action on the

variables in F
np
X,0(p, q, r, b1, b2). We can do so by first noting that the basic 81 curves

s1×s2 ⊂ X̃, s1 ∈ MW (B1), s2 ∈ MW (B2) (6.3)

are really one orbit under G × Ĝ. Recall that, after dividing out G, these curves became

the 9 sections in MW (X) = Z3 ⊕ Z3, see Part A subsection 8.3. We now observe that

MW (X) = {sij} is one Ĝ-orbit; since each of these sections contributes pbi
1b

j
2, i, j = 0, . . . , 2

the induced Ĝ action on the prepotential must be

ĝ1 : F
np
X,0(p, q, r, b1, b2) 7→ F

np
X,0(b1p, q, r, b1, b2),

ĝ2 : F
np
X,0(p, q, r, b1, b2) 7→ F

np
X,0(b2p, q, r, b1, b2).

(6.4)

Clearly, the prepotential must be invariant under the ĝ1, ĝ2 action. While imposing no

constraint on the p3n terms in the prepotential, all other powers of p must appear in the

combination

pn
( 2∑

i,j=0

bi
1b

j
2

)
, n 6≡ 0 mod 3. (6.5)

This proves the factorization observed at the beginning of this subsection.

Second, we would like to understand the p3q terms in eq. (6.1). These are the curves

in the homology classes15

(3, 1, 0, ∗, ∗) ∈ Z3 ⊕ Z3 ⊕ Z3 = H2

(
X, Z

)
. (6.6)

We will show that the rational curves in this class come in a single family, that is, the

moduli space of genus 0 curves on X in these homology classes

M0

(
X, (3, 1, 0, ∗, ∗)

)
(6.7)

is connected. In particular, all such curves have the same homology class (3, 1, 0, 0, 0) and

only contribute to p3q in the prepotential eq. (6.1). As discussed in Part A section 5,any

such map CX : P1 → X factors

P1
CX //

C eX ÂÂ?
??

??
??

?
X

X̃

q

??ÄÄÄÄÄÄÄÄ

. (6.8)

The map C eX can be written in terms of homogeneous coordinates as a function

C eX : P1
[z0:z1]

7→ P2
[x0:x1:x2]

×P1
[t0:t1]

×P2
[y0:y1:y2]

(6.9)

15Recall that the exponent of p is the degree along the base P1. This is why we pick a basis in H2(X, Z)free
such that a curve in (n1, n2, n3, m1, m2) contributes at order pn1qn2rn3bm1

1 bm2

2 in the prepotential.
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satisfying the equations (2.2a) and (2.2b) defining X̃,

F1 ◦ C eX
(
[z0 : z1]

)
= 0 = F2 ◦ C eX

(
[z0 : z1]

)
∀[z0 : z1] ∈ P1 . (6.10)

The curve CX ends up in the homology class (3, 1, 0, ∗, ∗) if and only if the defining equa-

tion (6.9) is of degree (3, 1, 0) in P2 ×P1 ×P2. Hence, eq. (6.9) is defined by complex

constants αij , βij , γi (up to rescaling) such that

xi = αi0 z0 + αi1 z1 i = 0, 1, 2

ti = βi0 z3
0 + βi1 z2

0z1 + βi2 z0z
2
1 + βi3 z3

1 i = 0, 1

yi = γi i = 0, 1, 2.

(6.11)

These constants have to be picked such that the resulting curve lies on the complete

intersection X̃ , that is, they have to satisfy eq. (6.10). Inserting eq. (6.11), we find that

F1 ◦ C eX
(
[z0 : z1]

)
is a homogeneous degree 6 polynomial in [z0 : z1]. Since the coefficients

of zk
0z6−k

1 must vanish individually, this yields 7 constraints for the parameters αij, βij .

What makes this system of constraint equations tractable is the fact that they are all linear

in βij ,

F1 ◦ C eX = 0 ⇔




A1 0 0 0 A5 0 0 0

A2 A1 0 0 A6 A5 0 0

A3 A2 A1 0 A7 A6 A5 0

A4 A3 A2 A1 A8 A7 A6 A5

0 A4 A3 A2 0 A8 A7 A6

0 0 A4 A3 0 0 A8 A7

0 0 0 A4 0 0 0 A8







β00

β01

β02

β03

β10

β11

β12

β13




= 0 (6.12)

where

A1
def= α3

00 + α3
10 + α3

20 A5
def= α00α10α20

A2
def= 3α01α

2
00 + 3α11α

2
10 + 3α21α

2
20 + α3

20 A6
def= (α01α10 + α00α11)α20 + α00α10α21

A3
def= 3α2

01α00 + 3α2
11α10 + 3α2

21α20 A7
def= α01α11α20 + (α01α10 + α00α11)α21

A4
def= α3

01 + α3
11 + α3

21 A8
def= α01α11α21.

(6.13)

Thinking of this as 7 linear equations for the 8 parameters βij , there is always a non-zero

solution. The solution is generically unique up to an overall factor, and turns into an

Pn for special values of the αij . Moreover, the parameter space of the αij is connected

(essentially, the moduli space of lines in P2). Since we just identified the parameter space

of the (αij , βij) as a blow-up thereof, it is therefore connected as well.

It remains to satisfy F2 ◦ C eX = 0. One can easily see that the only way is to pick the

γi to be simultaneous solutions of

γ3
0 + γ3

1 + γ3
2 = 0 = γ1γ2γ3. (6.14)

Since two cubics intersect in 9 points, there are 9 such solutions, permuted by G. Therefore,

the parameter space of (αij , βij , γi) has 9 connected components, permuted by the G-action.
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The moduli space of curves CX on X is the G-quotient of the moduli space of curves C eX on

X̃ , and therefore has only a single connected component. By continuity, every curve CX in

this connected family has the same homology class, explaining the piece of the prepotential

given in eq. (6.1).

7. Towards a closed formula

Putting all the information together we found out about the prepotential on X, one can

try to divine a closed form for the prepotential. We guess that the order pn terms have the

closed form

F
np
X,0(p, q, r, b1, b2)

∣∣∣
pn

=
pn

8n−1


 ∑

i,j∈Z3

bi
1b

j
2




(
P (q)4P (r)4

)n

M2n−2(q, r) (7.1)

if n is not a multiple of 3 and, slightly weaker, that

F
np
X,0(p, q, r, 1, 1)

∣∣∣
pn

=
9pn

8n−1

(
P (q)4P (r)4

)n

M2n−2(q, r) (7.2)

if n is a multiple of 3. Here,

• P (q) is the usual generating function of partitions eq. (1.4).

• The M2n−2 are polynomials in the Eisenstein series E2(q), E4(q), E6(q) and E2(r),

E4(r), E6(r), starting with

M−2(q, r) = 0

M0(q, r) = 1

M2(q, r) = E2(q)E2(r)

M4(q, r) =
13

108
E4(q)E4(r) +

1

4

(
E4(q)E2(r)

2 + E2(q)
2E4(r)

)
+

7

4
E2(q)

2E2(r)
2

M6(q, r) =
1

27
E6(q)E6(r) +

13

54

(
E6(q)E4(r)E2(r) + E4(q)E2(q)E6(r)

)

+
1

6

(
E6(q)E2(r)

3 + E2(q)
3E6(r)

)
+

79

108
E4(q)E2(q)E4(r)E2(r)

+
5

4

(
E2(q)

3E4(r)E2(r) + E4(q)E2(q)E2(r)
3
)

+
47

12
E2(q)

3E2(r)
3

M8(q, r) =
2

3
E6(q)E2(q)E6(r)E2(r) +

1309

6750
E4(q)E4(q)E4(r)E4(r)

+
25

108

(
E6(q)E2(q)E4(r)E4(r) + E4(q)E4(q)E6(r)E2(r)

)

+
85

54

(
E6(q)E2(q)E4(r)E2(r)

2 + E4(q)E2(q)
2E6(r)E2(r)

)

+
13

12

(
E6(q)E2(q)E2(r)

4 + E2(q)
4E6(r)E2(r)

)
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+
137

216

(
E4(q)E4(q)E4(r)E2(r)

2 + E4(q)E2(q)
2E4(r)E4(r)

)

+
3

8

(
E4(q)E4(q)E2(r)

4 + E2(q)
4E4(r)E4(r)

)

+
34

9
E4(q)E2(q)

2E4(r)E2(r)
2 +

121

12
E2(q)

4E2(r)
4

+
41

8

(
E4(q)E2(q)

2E2(r)
4 + E2(q)

4E4(r)E2(r)
2
)
.

(7.3)

They are symmetric under the exchange q ↔ r and of weight 2n in q and r separately.

But, for example, M4 above does not factor into a function of q and a function of r. So

the M2n−2 are not the products of the polynomials appearing in the dP9 prepotential.

However, by setting q = 0 or r = 0 one recovers the corresponding polynomials in

the dP9 prepotential [55].

• The E2i are the usual Eisenstein series

E2(q) = 1 − 24q − 72q2 − 96q3 − 168q4 − 144q5 − 288q6 + O(q7)

E4(q) = 1 + 240q + 2160q2 + 6720q3 + 17520q4 + 30240q5 + O(q6)

E6(q) = 1 − 504q − 16632q2 − 122976q3 − 532728q4 + O(q5).

(7.4)

Note that the naive Taylor series coefficients of the prepotential are fractional, but when

expanding in terms of Li3’s (which account for the multicover contributions) one finds

integral instanton numbers.

These expressions for the prepotential agree with all instanton numbers computed in

this paper. Unfortunately, we have not been able to guess a closed formula that includes

the b1 and b2 dependence of the prepotential F
np
X,0(p, q, r, b1, b2)|pn if n is divisible by 3. We

expect that these involve extra functions beyond the Eisenstein series.

8. Conclusion

In the initial paper Part A [1], we analyzed the topology of the Calabi-Yau manifold of

interest and found that

H2

(
X, Z

)
= Z3 ⊕ Z3 ⊕ Z3. (8.1)

Although the presence of torsion curve classes complicates the counting of rational curves,

we managed to derive the A-model prepotential to linear order in p.

The goal of this paper is to go beyond the results of Part A using mirror symmetry.

By carefully adapting methods designed for complete intersections in toric varieties, we

can apply mirror symmetry to compute the instanton numbers on X, even though X is

not toric. Using that X is self-mirror, we completely solve this problem and are able to

calculate the complete A-model prepotential to any desired precision (and for arbitrary

degrees in p), limited only by computer power. Carrying out this computation, we find the

first examples of instanton numbers that do depend on the torsion part of their integral

homology class, see table 4 on page 32.

Since the self-mirror property of X is important, we investigate it in detail. In doing

so, we go far beyond just checking that the Hodge numbers are self-mirror. In particular,
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we find that the intersection rings are identical and that torsion in homology obeys the

conjectured mirror relation [6]. Finally, going beyond classical geometry, we independently

calculate certain instanton numbers on X and its Batyrev-Borisov mirror X∗. Again, we

find that X and X∗ are indistinguishable, providing strong evidence for X being self-mirror.

Both of these results extend those found in Part A [1].

Using these results, we are able to guess certain closed expressions for the prepotential

of X in terms of modular forms. In certain limits it specializes to the dP9 prepotential

of [55]. There it is known that the coefficients in p of the dP9 prepotential satisfy a recursion

relation. Moreover, there is a gap condition, that is, a certain number of subsequent terms

in a series expansion is absent. This condition provides sufficient data to determine the

integration constants for the recursion and allows to determine the prepotential completely,

even at higher genus. We expect a similar story to be valid for the prepotential of X.
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A. Triangulation of ∇̄∗ and ∇∗

In principle the coherent triangulations of the fan over ∇̄∗ can be computed with TOPCOM

by finding the 720 star triangulations in the total of 230, 832 coherent triangulations of ∇̄∗.

The discussion of the symmetry properties is greatly facilitated, however, by an explicit

understanding of their structure. We will work out the triangulations by first triangulating

the facets and then checking the compatibility of their maximal intersections and the

coherence of the resulting star triangulations.

We start with a couple of useful definitions. A circuit is a minimal collection of n

affinely dependent points p1, . . . , pn,

λ1p1 + . . . λnpn = 0 with λ1 + . . . + λn = 0, λi 6= 0, (A.1)

any proper subset of which is affinely independent. The coefficient vector λn hence has

nonzero entries and is unique up to a prefactor. We indicate the unique separation into

points with positive and negative coefficients with the notation 〈pi1 . . . pis |pis+1 . . . pin〉.
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Each circuit admits two different triangulations, which are obtained by dropping one of

the points with positive coefficients and one of the remaining points, respectively. We

indicate this with a hat over the relevant subset. The two resulting triangulations

〈
̂pi1 . . . pis |pis+1 . . . pin

〉
,

〈
pi1 . . . pis | ̂pis+1 . . . pin

〉
(A.2)

hence consist of s and n − s simplices, respectively. If the first point is in the convex hull

of the others, that is, s = 1, then only one of the triangulations is maximal (all points are

vertices of at least one simplex).

Furthermore, we introduce the notation:

ai = ν̄i, bi = ν̄3+i, ci = ν̄6+i, di = ν̄12+i, i = 1, 2, 3,

e = ν̄13, f = ν̄14. (A.3)

Among these 14 vectors in eq. (A.3) there are 9 independent linear relations, see eq. (3.21),

a1 + a2 + a3 = 0, c1 + c2 + c3 = 0,

e + f = 0, bi = ai + e, dl = cl + f,
(A.4)

which imply others like ai + bj = aj + bi and ai + cl = bi + dl or e = 1
3(b1 + b2 + b3) and

f = 1
3(d1 + d2 + d3).

Lemma 1. ∇̄∗ has 15 facets, 6 of which are simplicial:

[
aiajbibjclcmdldm] i<j

l<m

,
[
aiajd1d2d3

]
i<j

,
[
b1b2b3clcm

]
l<m

. (A.5)

The nine non-simplicial facets form an orbit under the permutation symmetries Zab
3 ×

Zcd
3 generated by gab :

( ai

bi

)
→

(
ai+1

bi+1

)
and gcd :

( cl

dl

)
→

(
cl+1

dl+1

)
. According to the linear

relations eq. (A.4) the eight points on each non-simplicial facet form quadratic circuits

ai + bj = bi + aj , ai + cl = bi + dl, and cl + dm = cm + dl, which we call mixed if they

contain vertices of both elements of the nef partition 〈aicl|bidl〉, and pure circuits 〈aibj |biaj〉,

〈cldm|cmdl〉 otherwise.

The coherent triangulations of the facets [aiajbibjclcmdldm] are most easily obtained

from their Gale transform 


1 −1 −1 1 0 0 0 0

1 0 −1 0 1 0 −1 0

0 0 0 0 1 −1 −1 1


 , (A.6)

which is the coefficient matrix of the basis ai − aj − bi + bj = 0, ai − bi + cl − dl = 0

and cl − cm − dl + dm = 0 of linear relations. The coherent triangulations are in one-to-

one correspondence to chambers that are seperated by the facets of the cones generated

by all linear bases µ = {v1, v2, v3} with vi selected among the 8 column vectors of the

Gale transform [57, 58]. In the present case the cones over the faces of the parallel-

epiped in figure 1 are subdivided into 24 chambers, which are indicated by dashed lines.

The triangulations, which we can label by the facet containing and the edge adjoining
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s

ai

s

aj
s

bi

s

bj

s

cl

s

cm

s

dl

s
dm

Figure 1: Secondary fan of the non-simplicial facets. Chambers are indicated by dashed lines.

the chamber, are obtained as the sets of complements of those bases µ that span a cone

containing the respective chamber.

Hence, each non-simplicial facet has 24 coherent triangulations, which can be char-

acterized by the triangulations of its 2 pure and of its 4 mixed circuits: Calling the tri-

angulation 〈âicl|bidl〉 positive and the triangulation 〈aicl|b̂idl〉 negative, and arranging the

cyclic permutations gab and gcd in the horizontal and vertical direction, respectively, we

can assign one of 16 different types ± ±
± ± to each triangulation, where the signs indicate

the induced triangulations of the mixed circuits. The constraints that reduce the a priori

32 = 26 combinations to 24 all derive from the following rules:

ai aj

bi bj

cl 〈
aicl|b̂idl

〉
∧

〈
âjcl|bjdl

〉
⇒

〈
aibj |âjbi

〉
〈
âicl|bidl

〉
∧

〈
ajcl|b̂jdl

〉
⇒

〈
âibj |ajbi

〉 (A.7)

i.e. a triangular prism can be triangulated in 6 different ways, which correlates the a priori

8 combinations of the triangulations of the 3 squares (with analogous constraints for the

two “horizontal” prisms [aibiclcmdldm] contained in the facet [aiajbibjclcmdldm]). Putting

the pieces together we obtain

Lemma 2. The 24 triangulations of the non-simplicial facets can be assorted as follows:

• For + +
+ + , − −

− − the pure circuits are unconstrained, yielding 2 · 22 = 8 triangulations.

• For + +
− − , − −

+ + the pure ab-circuit is unconstrained; with the transposed types + −
+ − ,

− +
− + this accounts for another 8 triangulations.

• The final 8 triangulations come from the 8 types with an odd number of positive signs,

for which the triangulation of the pure circuits is unique.

• The two types + −
− + and − +

+ − cannot occur because of contradictory implications for

the triangulations of the pure circuits.

The secondary fan and the induced triangulations for the codimension-two faces at

which the non-simplical facets intersect can be obtained from figure 1 by projection along

the dropped vertices. The secondary fan of the prism of eq. (A.7), for example, which is
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Taibj

〈aicl|bidl〉s

bj

Taicl

¡
¡

¡
¡¡

〈ajcl|bjdl〉
s

ai
Tajcl

〈ajbi|aibj〉

scl

Tajbi

〈bidl|aicl〉 s

aj

Tbidl

¡
¡

¡
¡¡〈ajcl|bjdl〉

s

bi Tbjdl

〈ajbi|aibj〉

sdl

Figure 2: Secondary fan of the codimension two face [aiajbibjcldl].

+++
+++
+++

−++
+++
+++

−−+
+++
+++

−−−
+++
+++

−−+
−++
+++

−−−
−++
+++

−−+
−−+
+++

−−−
−−−
−−−

+−−
−−−
−−−

++−
−−−
−−−

+++
−−−
−−−

++−
+−−
−−−

+++
+−−
−−−

++−
++−
−−−

1 · 26 9 · 22 18 · 22 6 · 24 36 · 20 36 · 21 9 · 22

Table 5: The 824 = 2 (64 + 36 + 72 + 96 + 36 + 72 + 36) star triangulations of ∇∗, including the

720 = 2 (36 + 36 + 72 + 72 + 36 + 72 + 36) coherent triangulations.

shown in figure 2, is obtained from figure 1 by projection along the diagonal 〈cmdm〉. The

wall crossings between the six cones in figure 2 are labeled by the circuits whose flops relate

the adjoining triangulations [57].

For the construction of the complete star triangulation we now observe that the non-

simplicial intersections of the 9 non-simplicial facets [aiajbibjclcmdldm] are given by the 18

triangular prisms [aiajbibjcldl] and [aibiclcmdldm]. If we interpret the former as vertices

and the latter as links then the resulting compatibility conditions correspond to a graph

with the topology of a torus. The vertices of this graph are decorated by signs as shown

in table 5 and connected by horizontal and vertical links.

The restriction on the compatible signs is due to the absence of the inconsistent types
+ −
− + and − +

+ − as subgraphs on the torus. The multiplicities µ · 2n come from the number

n of unconstrained pure circuits and from the order µ of the effective part of the symmetry

group generated by transposition and permutations of lines and columns. We thus find a

total of 824 triangulations. The cyclic permutation symmetry that we want to keep on the

Calabi-Yau manifold X
∗

amounts to a diagonal shift, i.e. its induced action on the graph is

generated by gabgcd. We are hence left with the types
+
+
+

+
+
+

+
+
+

and
–
–
–

–
–
–

–
–
–

, and the shift symmetry

furthermore aligns the triangulations of the pure circuits and thus reduced the multiplicities

from 26 to 22, yielding a total of 8 triangulations for which P∇̄∗ is G∗
2 symmetric.

The resulting triangulations of the facet [a2a3b2b3c2c3d2d3] are
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+
+
+

+
+
+

+
+
+

triangulation of [a2a3b2b3c2c3d2d3]

〈â2b3|a3b2〉, 〈ĉ2d3|c3d2〉 {[a3b2b3d2d3], [b2b3c3d2d3], [a2a3b2d2d3], [b2b3c2c3d2]}

〈â2b3|a3b2〉, 〈c2d3|ĉ3d2〉 {[a3b2b3d2d3], [b2b3c2d2d3], [a2a3b2d2d3], [b2b3c2c3d3]}

〈a2b3|â3b2〉, 〈ĉ2d3|c3d2〉 {[a2b2b3d2d3], [b2b3c3d2d3], [a2a3b3d2d3], [b2b3c2c3d2]}

〈a2b3|â3b2〉, 〈c2d3|ĉ3d2〉 {[a2b2b3d2d3], [b2b3c2d2d3], [a2a3b3d2d3], [b2b3c2c3d3]}

(A.8)

–
–
–

–
–
–

–
–
–

triangulation of [a2a3b2b3c2c3d2d3]

〈a2b3|â3b2〉, 〈c2d3|ĉ3d2〉 {[a2a3b3c2c3], [a2a3c2c3d3], [a2b2b3c2c3], [a2a3c2d2d3]}

〈a2b3|â3b2〉, 〈ĉ2d3|c3d2〉 {[a2a3b3c2c3], [a2a3c2c3d2], [a2b3b2c2c3], [a2a3c3d2d3]}

〈â2b3|a3b2〉, 〈c2d3|ĉ3d2〉 {[a2a3b2c2c3], [a2a3c2c3d3], [a3b2b3c2c3], [a2a3c2d2d3]}

〈â2b3|a3b2〉, 〈ĉ2d3|c3d2〉 {[a2a3b2c2c3], [a2a3c2c3d2], [a3b2b3c2c3], [a2a3c3d2d3]}

(A.9)

It can be checked that the triangulations listed in eqs. (A.8) and (A.9) come from the

chambers contained in the cones over [a2a3c2c3] and [b2b3d2d3], respectively. For the first of

these triangulations we consider the chamber adjoining the edge [a2c2], which is contained

in the span of the four bases µ1 = {a2c2c3}, µ2 = {a2a3c2}, µ3 = {b3c2c3} and µ4 =

{a2a3d3}, whose complements are [a3b2b3d2d3], [b2b3c3d2d3], [a2a3b2d2d3] and [b2b3c2c3d2]

in agreement with the first triangulation in eq. (A.8).

Unfortunately, coherent triangulations of the facets that induce the same triangulations

on their common (maximal) intersections do not automatically combine to coherent star

triangulations of the polytope, and indeed only 720 of the 824 triangulations in table 5 turn

out to be coherent. The non-coherent ones are easily isolated by observing that coherent

triangulations (via their height functions) induce coherent triangulations of the prisms

[a1a2a3b1b2b2] and [c1c2c3d1d2d3], which eliminates the triangulations for which Zab
3 or Zcd

3

is not broken by the triangulation of the pure circuits. For the triangulation types
+
+
+

+
+
+

+
+
+

and

–
–
–

–
–
–

–
–
–

this reduces the multiplicity from 82 to 62. The only other affected types are the ones in

the middle column of table 5, which have unbroken horizontal symmetry and for which the

multiplicity is reduced from 12 ·8 to 12 ·6. This poses a problem for the eight Z3-symmetric

triangulations, which are all non-coherent. Coherence of the remaining 720 triangulations

can be established by checking that their Mori cones are all strictly convex [59].

What comes to our rescue is that, even if all projective ambient spaces break the

diagonal Z3 permutation symmetry, it may be preserved on X
∗

if the obstructing excep-

tional sets do not overlap with the complete intersection. In the present case these are the

blow-ups of the singularities coming from the pure circuits, i.e. codimension two sets of

the form ai · bj or cl · dm, where we use, for simplicity, the symbol of the vertex ν̄j for the

corresponding divisor Dj . Recall from eq. (4.5) that X
∗

is given by the product D̄∗
0,1 · D̄

∗
0,2

of the divisors

D̄∗
0,1 = a1 + a2 + a3 + b1 + b2 + b3 + e, D̄∗

0,2 = c1 + c2 + c3 + c1 + d2 + d3 + f (A.10)
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defined by the nef partition. Taking into account the five linear equivalences, we observe

that

a1 + b1 = a2 + b2 = a3 + b3, c1 + d1 = c2 + d2 = c3 + d3,

b1 + b2 + b3 + e = d1 + d2 + d3 + f, (A.11)

for divisor classes in the intersection ring. We first show that e and f do not intersect X
∗
:

In any maximal triangulation e and f belong only to the simplices

[
b̂1b2b3cmcle

]
,

[
d̂1d2d3amalf

]
, (A.12)

respectively, so that

e·ai = e·dl = e·f = 0 ⇒ e·D̄∗
0,1 = e·(b1+b2+b3+e) = e·(d1+d2+d3+f) = 0 (A.13)

and similarly f · D̄∗
0,2 = 0. Putting everything together, we conclude that

a1 · b2 · D̄
∗
0,1 = a1 · b2 · 3(a3 + b3) = 0 (A.14)

because none of the facets, and hence no triangle in any of the triangulations contains

{a1, b2, a3} or {a1, b2, b3} as a subset. Similarly cl · dm · D̄∗
0,2 = 0 in the intersection ring

for l 6= m. Consequently, all exceptional sets arising from triangulations of pure circuits do

not intersect X
∗

and hence do not obstruct the cyclic permutation symmetry G∗
2. We will

denote any of the remaining 36 coherent triangulations of type
+
+
+

+
+
+

+
+
+

and
–
–
–

–
–
–

–
–
–

by T+ = T+(∇̄∗)

and T− = T−(∇̄∗), respectively.

The polytope ∇∗ of the mirror X̃∗ of the universal cover has 39 lattice points, with the

same 12 vertices as ∇̄∗ but living on the finer lattice M̄ . The 24 additional lattice points,

see eq. (3.23), are

aij =
1

3
(ai + 2aj), bij =

1

3
(bi + 2bj), (A.15)

cij =
1

3
(ci + 2cj), dij =

1

3
(di + 2dj), (A.16)

where i 6= j. These additional points are all located on edges of ∇∗. It is natural to

consider triangulations that are refinements of the ones that we just discussed. Observing

that the additional points turn all simplices in eqs. (A.8), (A.9) and (A.12) into pyramids

over a tetrahedron with interior points on opposite edges it is easy to see that the maximal

triangulations are unique and multiply the number 54 = 9 · 4 + 6 · 3 of triangles in the

original triangulations by a factor of 9. The resulting triangulations have been used to

show that the divisors corresponding to the vertices aij and cij do not intersect X̃∗.

B. The flop of X∗

In section 4.5 we have taken into account only one of the triangulations T+(∇̄∗). We can

repeat the same calculation with one of the triangulations T−. We denote the resulting
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Calabi-Yau manifold by X
∗
−. Skipping the details, we find that the generators of the Mori

cone NE(X
∗
−) can be expressed in terms of those of NE(X

∗
) in eq. (4.32) as

l̄
(1)
− = l̄

(1)
+ + 3

(
l̄
(4)
+ + l̄

(5)
+ + l̄

(6)
+ + l̄

(7)
+

)
,

l̄
(2)
− = l̄

(2)
+ + 3

(
l̄
(3)
+ + l̄

(4)
+ + l̄

(5)
+

)
,

l̄
(3)
− = l̄

(3)
+ + l̄

(4)
+ ,

l̄
(4)
− = − l̄

(4)
+ ,

l̄
(5)
− = − l̄

(5)
+ − l̄

(3)
+ − l̄

(4)
+ − l̄

(6)
+ − l̄

(7)
+ ,

l̄
(6)
− = l̄

(6)
+ ,

l̄
(7)
− = l̄

(7)
+ .

(B.1)

One can also express the dual basis of divisors J̄ ′
i on the flop in terms of the dual basis J̄∗

i

on X, see eq. (4.33). We find

J̄ ′
1 = J̄∗

1 , J̄ ′
2 = J̄∗

2 , J̄ ′
5 = 3J̄∗

1 + 3J̄∗
2 − J̄∗

5

J̄ ′
3 = 3J̄∗

1 + J̄∗
3 − J̄∗

5 , J̄ ′
4 = 3J̄∗

1 + J̄∗
3 − J̄∗

4 , (B.2)

J̄ ′
6 = 3J̄∗

2 − J̄∗
5 + J̄∗

6 , J̄ ′
7 = 3J̄∗

2 − J̄∗
5 + J̄∗

7 .

The intersection ring is

J̄ ′2
1 J̄ ′

2 = 1, J̄ ′2
1 J̄ ′

3 = 2, J̄ ′2
1 J̄ ′

4 = 1, J̄ ′2
1 J̄ ′

5 = 3, J̄ ′2
1 J̄ ′

6 = 3,

J̄ ′2
1 J̄ ′

7 = 3, J̄ ′
1J̄

′2
2 = 1, J̄ ′

1J̄
′
2J̄

′
3 = 3, J̄ ′

1J̄
′
2J̄

′
4 = 3, J̄ ′

1J̄
′
2J̄

′
5 = 3,

J̄ ′
1J̄

′
2J̄

′
6 = 3, J̄ ′

1J̄
′
2J̄

′
7 = 3, J̄ ′

1J̄
′2
3 = 6, J̄ ′

1J̄
′
3J̄

′
4 = 6, J̄ ′

1J̄
′
3J̄

′
5 = 9,

J̄ ′
1J̄

′
3J̄

′
6 = 9, J̄ ′

1J̄
′
3J̄

′
7 = 9, J̄ ′

1J̄
′2
4 = 3, J̄ ′

1J̄
′
4J̄

′
5 = 9, J̄ ′

1J̄
′
4J̄

′
6 = 9,

J̄ ′
1J̄

′
4J̄

′
7 = 9, J̄ ′

1J̄
′2
5 = 9, J̄ ′

1J̄
′
5J̄

′
6 = 9, J̄ ′

1J̄
′
5J̄

′
7 = 9, J̄ ′

1J̄
′2
6 = 9,

J̄ ′
1J̄

′
6J̄

′
7 = 9, J̄ ′

1J̄
′2
7 = 9, J̄ ′2

2 J̄ ′
3 = 3, J̄ ′2

2 J̄ ′
4 = 3, J̄ ′2

2 J̄ ′
5 = 3,

J̄ ′2
2 J̄ ′

6 = 2, J̄ ′2
2 J̄ ′

7 = 1, J̄ ′
2J̄

′2
3 = 9, J̄ ′

2J̄
′
3J̄

′
4 = 9, J̄ ′

2J̄
′
3J̄

′
5 = 9,

J̄ ′
2J̄

′
3J̄

′
6 = 9, J̄ ′

2J̄
′
3J̄

′
7 = 9, J̄ ′

2J̄
′2
4 = 9, J̄ ′

2J̄
′
4J̄

′
5 = 9, J̄ ′

2J̄
′
4J̄

′
6 = 9,

J̄ ′
2J̄

′
4J̄

′
7 = 9, J̄ ′

2J̄
′2
5 = 9, J̄ ′

2J̄
′
5J̄

′
6 = 9, J̄ ′

2J̄
′
5J̄

′
7 = 9, J̄ ′

2J̄
′2
6 = 6,

J̄ ′
2J̄

′
6J̄

′
7 = 6, J̄ ′

2J̄
′2
7 = 3, J̄ ′3

3 = 18, J̄ ′2
3 J̄ ′

4 = 18, J̄ ′2
3 J̄ ′

5 = 27,

J̄ ′2
3 J̄ ′

6 = 27, J̄ ′2
3 J̄ ′

7 = 27, J̄ ′
3J̄

′2
4 = 18, J̄ ′

3J̄
′
4J̄

′
5 = 27, J̄ ′

3J̄
′
4J̄

′
6 = 27,

J̄ ′
3J̄

′
4J̄

′
7 = 27, J̄ ′

3J̄
′2
5 = 27, J̄ ′

3J̄
′
5J̄

′
6 = 27, J̄ ′

3J̄
′
5J̄

′
7 = 27, J̄ ′

3J̄
′2
6 = 27,

J̄ ′
3J̄

′
6J̄

′
7 = 27, J̄ ′

3J̄
′2
7 = 27, J̄ ′3

4 = 9, J̄ ′2
4 J̄ ′

5 = 27, J̄ ′2
4 J̄ ′

6 = 27,

J̄ ′2
4 J̄ ′

7 = 27, J̄ ′
4J̄

′2
5 = 27, J̄ ′

4J̄
′
5J̄

′
6 = 27, J̄ ′

4J̄
′
5J̄

′
7 = 27, J̄ ′

4J̄
′2
6 = 27,

J̄ ′
4J̄

′
6J̄

′
7 = 27, J̄ ′

4J̄
′2
7 = 27, J̄ ′3

5 = 27, J̄ ′2
5 J̄ ′

6 = 27, J̄ ′2
5 J̄ ′

7 = 27,

J̄5J̄
′2
6 = 27, J̄ ′

5J̄
′
6J̄

′
7 = 27, J̄5J̄

′2
7 = 27, J̄ ′3

6 = 18, J̄ ′2
6 J̄ ′

7 = 18,

J̄ ′
6J̄

′2
7 = 18, J̄ ′3

7 = 9.

(B.3)
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The second Chern class is

c2

(
X

∗
−

)
· J̄ ′

1 = 12, c2

(
X

∗
−

)
· J̄ ′

5 = 18, c2

(
X

∗
−

)
· J̄ ′

2 = 12,

c2

(
X

∗
−

)
· J̄ ′

3 = c2

(
X

∗
−

)
· J̄ ′

6 = 24, c2

(
X

∗
−

)
· J̄ ′

4 = c2

(
X

∗
−

)
· J̄ ′

7 = 30. (B.4)

We observe that both the intersection ring and the second Chern class cannot be brought

into (2.6) and (4.38) by a linear transformation with integer coefficients, respectively.

Hence, the second phase really is topologically distinct.

We denote the Fourier-transformed variables in the B-model prepotential (3.55) by

q′i, i = 1, . . . , 7. With this notation, we obtain

F
B
X−,0

(q′1, . . . , q
′
7) = 3 q′1 + 3 q′2 + 3 q′5 −

45

8
q′1

2
−

45

8
q′2

2
+

3

8
q′5

2
+ 3 q′3q

′
5 + 3 q′5q

′
6

+
244

9
q′1

3
+

244

9
q′2

3
+

1

9
q′5

3
+ 3 q′3q

′
4q

′
5 + 3 q′3q

′
5q

′
6 + 3 q′5q

′
6q

′
7

−
12333

64
q′1

4
−

12333

64
q′2

4
+

3

64
q′5

4
+ 3 q′1q

′
4
3
+ 3 q′2q

′
7
3

+
3

8
q′5

2
q′6

2
+

3

8
q′3

2
q′5

2
− 6 q′1q

′
3q

′
4q

′
5 − 6 q′2q

′
5q

′
6q

′
7

+ 3 q′3q
′
4q

′
5q

′
6 + 3 q′3q

′
5q

′
6q

′
7 + O(q′5).

(B.5)

The instanton numbers on X
∗
− are the expansion coefficients in

F
np

X
∗

−
,0
(q′1, . . . , q

′
7, 1) =

∑

n1,...,n7

n
X

∗

−

(n1,n2,n3,n4,n5,n6,n7)
Li3

( 7∏

i=1

q′i
ni

)
. (B.6)

Up to degree 4, they read

n
X

∗

−

1,0,0,0,0,0,0 = 3 n
X

∗

−

0,1,0,0,0,0,0 = 3 n
X

∗

−

0,0,0,0,1,0,0 = 3 n
X

∗

−

2,0,0,0,0,0,0 = −6

n
X

∗

−

0,2,0,0,0,0,0 = −6 n
X

∗

−

3,0,0,0,0,0,0 = 27 n
X

∗

−

0,3,0,0,0,0,0 = 27 n
X

∗

−

4,0,0,0,0,0,0 = −192

n
X

∗

−

0,4,0,0,0,0,0 = −192 n
X

∗

−

0,0,1,0,1,0,0 = 3 n
X

∗

−

0,0,0,0,1,1,0 = 3 n
X

∗

−

0,0,1,1,1,0,0 = 3

n
X

∗

−

0,0,1,0,1,1,0 = 3 n
X

∗

−

0,0,0,0,1,1,1 = 3 n
X

∗

−

1,0,0,3,0,0,0 = 3 n
X

∗

−

0,1,0,0,0,0,3 = 3

n
X

∗

−

1,0,1,1,1,0,0 = −6 n
X

∗

−

0,1,0,0,1,1,1 = −6 n
X

∗

−

0,0,1,1,1,1,0 = 3 n
X

∗

−

0,0,1,0,1,1,1 = 3

(B.7)

It is easy to check that the symmetry G∗
2 acts without fixed points on X

∗
− so that there are

two phases of the quotient X∗, too, with h1,1(X∗) = h1,2(X∗) = 3 and fundamental group

π1(X
∗) = Z3 × Z3. They correspond to the two classes of triangulations T+ and T−. The

first phase was studied in detail in section 4.5 and section 4.6.

We denote the Calabi-Yau manifold in the second phase by X∗
− = X

∗
−/G∗

2. From

the linear equivalence relations eq. (4.34) and the definition eq. (B.2) we can compute the
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induced group action on H2(X
∗
−, Z) and find

g∗2




J̄ ′
1

J̄ ′
2

J̄ ′
3

J̄ ′
4

J̄ ′
5

J̄ ′
6

J̄ ′
7




=




1 0 0 0 0 0 0

0 1 0 0 0 0 0

3 0 0 −1 1 0 0

3 0 1 −1 0 0 0

0 0 0 0 1 0 0

0 3 0 0 1 0 −1

0 3 0 0 0 1 −1







J̄ ′
1

J̄ ′
2

J̄ ′
3

J̄ ′
4

J̄ ′
5

J̄ ′
6

J̄ ′
7




. (B.8)

In terms of the three invariant divisors J ′
1 = J̄ ′

5, J
′
2 = J̄ ′

1, J
′
3 = J̄ ′

2 the intersection ring and

the second Chern class of X∗
− then are

J ′2
2 J ′

3 = 1, J ′
1J

′2
2 = 3, J ′

2J
′2
3 = 1, J ′

1J
′
2J

′
3 = 3,

J ′2
1 J ′

2 = 9, J ′
1J

′2
3 = 3, J ′2

1 J ′
3 = 9, J ′3

1 = 27,

c2 J ′
1 = 18, c2 J ′

2 = 12, c2 J ′
3 = 12.

(B.9)

Again, we observe that there is no linear basis transformation with integer coefficients that

brings both the intersection ring and the second Chern class into (4.18). Hence, also the

phase X∗
− is topologically distinct from X∗.

To give a geometrical interpretation of what happens, we look at the induced action

of G∗
2 on the toric Mori cone NE(X

∗
−). Only the generators l̄

(1)
− , l̄

(2)
− and l̄

(5)
− in eq. (B.1)

are invariant. This is exactly as in the first phase. Denoting the invariant generators

l̄
(5)
± , l̄

(1)
± , l̄

(2)
± by l

(1)
± , l

(2)
± , l

(3)
± , respectively, we observe that phase T− is obtained from the

phase T+ as a flop by the curve corresponding to the generator l
(1)
+ :

l
(1)
− = −l

(1)
+ , l

(2)
− = l

(2)
+ + 3l

(1)
+ , l

(3)
− = l

(3)
+ + 3l

(1)
+ . (B.10)

If we use the realization of X in terms of the fiber product of two dP9 surfaces, the above

result means that the base P1 of X has been flopped.

Furthermore, having computed the G∗
2-action in eq. (B.8), we determine the descent

equation for the prepotential to be

F
np
X∗

−
,0

(
p′, q′, r′, b′1, b

′
2) =

1

|G∗
2|

F
np

X
∗

−
,0

(
p′, q′, b′2, b

′
2, r

′, b′2
2, b′2

2, b′1
)
. (B.11)

The corresponding instanton numbers

F
np
X∗

−
,0(p

′, q′, r′, 1, b′2) =
∑

n1,n2,n3,m2

n
X∗

−

(n1,n2,n3,m2) Li3
(
p′n1q′n2r′n3b′2

m2
)

(B.12)

are listed in table 6.
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(n1, n2, n3) n
X∗

−

(n1,n2,n3,0) n
X∗

−

(n1,n2,n3,1) n
X∗

−

(n1,n2,n3,2)

∑2
m2=0 n

X∗

−

(n1,n2,n3)

(1, 0, 0) 3 0 0 3

(2, 0, 0) −6 0 0 −6

(3, 0, 0) 18 0 0 18

(0, 1, 0) 3 3 3 9

(1, 1, 0) −6 −6 −6 −18

(1, 1, 1) 12 12 12 36

(2, 1, 0) 15 15 15 45

(1, 2, 0) 12 12 12 36

Table 6: Instanton numbers n
X∗

−

(n1,n2,n3,m2)
computed by toric mirror symmetry. They are invariant

under the exchange n2 ↔ n3, so we only display them for n2 ≤ n3.
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